Normalized defining polynomial
\( x^{14} - 2 x^{13} + 63 x^{12} - 62 x^{11} + 2514 x^{10} - 3924 x^{9} + 80327 x^{8} - 162296 x^{7} + 1808214 x^{6} - 3652314 x^{5} + 26185174 x^{4} - 42685580 x^{3} + 216370161 x^{2} - 217576562 x + 770198807 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-69014072539312321109968799399936=-\,2^{21}\cdot 7^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $188.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2408=2^{3}\cdot 7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2408}(1,·)$, $\chi_{2408}(1301,·)$, $\chi_{2408}(517,·)$, $\chi_{2408}(1569,·)$, $\chi_{2408}(2185,·)$, $\chi_{2408}(1245,·)$, $\chi_{2408}(785,·)$, $\chi_{2408}(2197,·)$, $\chi_{2408}(1177,·)$, $\chi_{2408}(1681,·)$, $\chi_{2408}(729,·)$, $\chi_{2408}(293,·)$, $\chi_{2408}(1693,·)$, $\chi_{2408}(2085,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{3}{7} a^{9} - \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{9} - \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{49} a^{12} - \frac{3}{49} a^{11} + \frac{3}{49} a^{10} - \frac{23}{49} a^{9} - \frac{18}{49} a^{8} + \frac{23}{49} a^{6} - \frac{3}{49} a^{5} + \frac{19}{49} a^{4} - \frac{6}{49} a^{3} + \frac{2}{7} a$, $\frac{1}{225004472072607099366125166801818734609} a^{13} - \frac{1603677392583638593136792771575566296}{225004472072607099366125166801818734609} a^{12} - \frac{1171749967697582404466766934248067628}{225004472072607099366125166801818734609} a^{11} + \frac{9647379472353947335487673031239539679}{225004472072607099366125166801818734609} a^{10} + \frac{1452065719518081629874759054701387411}{32143496010372442766589309543116962087} a^{9} - \frac{34200378703036208360875336243316028537}{225004472072607099366125166801818734609} a^{8} - \frac{102072472330932465879075770994266517969}{225004472072607099366125166801818734609} a^{7} - \frac{329043556408313239571966621978830000}{4591928001481777538084187077588137441} a^{6} + \frac{83831049772188805331672918989356212435}{225004472072607099366125166801818734609} a^{5} - \frac{87324120309357733108629763542535561605}{225004472072607099366125166801818734609} a^{4} - \frac{96509611755308282772372483119684645976}{225004472072607099366125166801818734609} a^{3} + \frac{2067830093242899262884753422850663330}{32143496010372442766589309543116962087} a^{2} + \frac{14223303037985682175204397342295751031}{32143496010372442766589309543116962087} a - \frac{1158680381347401370427663180987401366}{4591928001481777538084187077588137441}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8516}$, which has order $545024$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.34 | $x^{14} + 4 x^{13} + 8 x^{12} + 4 x^{11} + 5 x^{10} + 8 x^{9} - 6 x^{8} - 6 x^{7} + x^{6} + 6 x^{5} + 2 x^{3} + 7 x^{2} + 6 x - 7$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.14.12.1 | $x^{14} + 3569 x^{7} + 4043763$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |