Normalized defining polynomial
\( x^{14} - 5 x^{13} + 6 x^{12} + 11 x^{11} + 54 x^{10} - 315 x^{9} + 1275 x^{8} - 3203 x^{7} + 9895 x^{6} - 18010 x^{5} + 45292 x^{4} - 47572 x^{3} + 108523 x^{2} - 68096 x + 130153 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6894849182652903337173011=-\,11^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(319=11\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{319}(1,·)$, $\chi_{319}(197,·)$, $\chi_{319}(65,·)$, $\chi_{319}(199,·)$, $\chi_{319}(45,·)$, $\chi_{319}(78,·)$, $\chi_{319}(175,·)$, $\chi_{319}(210,·)$, $\chi_{319}(54,·)$, $\chi_{319}(23,·)$, $\chi_{319}(111,·)$, $\chi_{319}(219,·)$, $\chi_{319}(252,·)$, $\chi_{319}(285,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{7}{17} a^{11} - \frac{4}{17} a^{10} + \frac{2}{17} a^{9} - \frac{5}{17} a^{8} - \frac{2}{17} a^{7} + \frac{4}{17} a^{6} + \frac{8}{17} a^{5} - \frac{7}{17} a^{4} + \frac{7}{17} a^{3} - \frac{2}{17} a^{2} - \frac{8}{17} a + \frac{2}{17}$, $\frac{1}{2703706331164251614721780343} a^{13} - \frac{12495713740811643920422868}{2703706331164251614721780343} a^{12} + \frac{21799534981827916974526249}{2703706331164251614721780343} a^{11} + \frac{58046986896704241508151606}{159041548892014800865987079} a^{10} + \frac{1176246536709448985155399508}{2703706331164251614721780343} a^{9} - \frac{857344167073994860503329568}{2703706331164251614721780343} a^{8} + \frac{398203165457311843570039441}{2703706331164251614721780343} a^{7} + \frac{505051682991829025694187193}{2703706331164251614721780343} a^{6} - \frac{1323791263471766707539168114}{2703706331164251614721780343} a^{5} + \frac{1022361781605015273771466466}{2703706331164251614721780343} a^{4} + \frac{790643291372915250313176263}{2703706331164251614721780343} a^{3} - \frac{286195546878460035577917037}{2703706331164251614721780343} a^{2} + \frac{446197926551148805413920929}{2703706331164251614721780343} a - \frac{171455554545250476069548423}{2703706331164251614721780343}$
Class group and class number
$C_{2}\times C_{2}\times C_{86}$, which has order $344$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.14.7.2 | $x^{14} - 1771561 x^{2} + 77948684$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |