Normalized defining polynomial
\( x^{14} - 5 x^{13} + x^{12} - 15 x^{11} + 290 x^{10} - 82 x^{9} + 1576 x^{8} - 399 x^{7} + 22358 x^{6} + 20590 x^{5} + 123285 x^{4} + 99663 x^{3} + 589214 x^{2} + 602483 x + 1228891 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6827477543251035514764609375=-\,3^{7}\cdot 5^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(645=3\cdot 5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{645}(256,·)$, $\chi_{645}(1,·)$, $\chi_{645}(226,·)$, $\chi_{645}(451,·)$, $\chi_{645}(164,·)$, $\chi_{645}(391,·)$, $\chi_{645}(299,·)$, $\chi_{645}(44,·)$, $\chi_{645}(269,·)$, $\chi_{645}(494,·)$, $\chi_{645}(16,·)$, $\chi_{645}(434,·)$, $\chi_{645}(121,·)$, $\chi_{645}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{9} - \frac{2}{7} a^{8} + \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{11} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{9} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{1036587382219329365830852194013} a^{13} + \frac{5556319178638077611066495699}{1036587382219329365830852194013} a^{12} - \frac{52635189871986457185441367}{1036587382219329365830852194013} a^{11} - \frac{35536934900243704265759893482}{1036587382219329365830852194013} a^{10} + \frac{285892500276526404232190207696}{1036587382219329365830852194013} a^{9} - \frac{370828557070706359706325012635}{1036587382219329365830852194013} a^{8} - \frac{298627483266556749588274903837}{1036587382219329365830852194013} a^{7} + \frac{454961177714920707098457920054}{1036587382219329365830852194013} a^{6} - \frac{319139008586708641367886436702}{1036587382219329365830852194013} a^{5} + \frac{36847606517324435821933301100}{148083911745618480832978884859} a^{4} + \frac{233254926197109767510070511485}{1036587382219329365830852194013} a^{3} - \frac{310841601602039708055303813573}{1036587382219329365830852194013} a^{2} + \frac{52063724705790597249500415118}{1036587382219329365830852194013} a - \frac{134307264869194666624686918487}{1036587382219329365830852194013}$
Class group and class number
$C_{1766}$, which has order $1766$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.14.12.1 | $x^{14} + 3569 x^{7} + 4043763$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |