Normalized defining polynomial
\( x^{14} - x^{13} + 248 x^{12} - 249 x^{11} + 20946 x^{10} - 21196 x^{9} + 747078 x^{8} - 951747 x^{7} + 11017281 x^{6} - 22664583 x^{5} + 74493972 x^{4} - 163620583 x^{3} + 444796489 x^{2} - 451469716 x + 476400689 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-660161636887192665823095859375=-\,5^{7}\cdot 7^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1015=5\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1015}(1,·)$, $\chi_{1015}(34,·)$, $\chi_{1015}(419,·)$, $\chi_{1015}(36,·)$, $\chi_{1015}(806,·)$, $\chi_{1015}(874,·)$, $\chi_{1015}(141,·)$, $\chi_{1015}(209,·)$, $\chi_{1015}(979,·)$, $\chi_{1015}(596,·)$, $\chi_{1015}(981,·)$, $\chi_{1015}(1014,·)$, $\chi_{1015}(281,·)$, $\chi_{1015}(734,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41} a^{12} - \frac{15}{41} a^{11} - \frac{1}{41} a^{10} + \frac{8}{41} a^{9} + \frac{14}{41} a^{8} - \frac{13}{41} a^{7} + \frac{5}{41} a^{6} + \frac{20}{41} a^{5} + \frac{15}{41} a^{4} + \frac{11}{41} a^{3} + \frac{19}{41} a^{2} + \frac{18}{41} a$, $\frac{1}{25063016337792776789283119643313166955227880296832491671} a^{13} + \frac{241958923196887106453470834115400108650890429395840391}{25063016337792776789283119643313166955227880296832491671} a^{12} - \frac{4074735438796101410812375531124661355577894085240525259}{25063016337792776789283119643313166955227880296832491671} a^{11} - \frac{3169480317281134084405972761068782358576425910185925763}{25063016337792776789283119643313166955227880296832491671} a^{10} - \frac{6020893980505479418239057950031581340685400408039059104}{25063016337792776789283119643313166955227880296832491671} a^{9} + \frac{10302397929474273485709177808522657428117718362816772653}{25063016337792776789283119643313166955227880296832491671} a^{8} + \frac{3121311501450921298811666062324951113891147181763352502}{25063016337792776789283119643313166955227880296832491671} a^{7} + \frac{2530154719431635888384649768302692929112285285781969426}{25063016337792776789283119643313166955227880296832491671} a^{6} - \frac{988822868856110083481264793052293078729947665526624057}{25063016337792776789283119643313166955227880296832491671} a^{5} + \frac{12362223365454728417215871297815789870069148877065953613}{25063016337792776789283119643313166955227880296832491671} a^{4} + \frac{9547305186853378455399753722523317512505623959006023197}{25063016337792776789283119643313166955227880296832491671} a^{3} - \frac{10861690114173934294447229031376401548867430623796522578}{25063016337792776789283119643313166955227880296832491671} a^{2} - \frac{12151588989193563476141518460338076707591371725217751785}{25063016337792776789283119643313166955227880296832491671} a + \frac{77765809454547012261056175420640570082319655596993464}{611293081409579921689832186422272364761655616995914431}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{5944}$, which has order $95104$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1015}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |