Properties

Label 14.0.65469859098...3984.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,2^{14}\cdot 43^{12}$
Root discriminant $50.25$
Ramified primes $2, 43$
Class number $43$ (GRH)
Class group $[43]$ (GRH)
Galois group $C_{14}$ (as 14T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2401, 0, 10241, 0, 13714, 0, 8570, 0, 2787, 0, 470, 0, 37, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 + 37*x^12 + 470*x^10 + 2787*x^8 + 8570*x^6 + 13714*x^4 + 10241*x^2 + 2401)
 
gp: K = bnfinit(x^14 + 37*x^12 + 470*x^10 + 2787*x^8 + 8570*x^6 + 13714*x^4 + 10241*x^2 + 2401, 1)
 

Normalized defining polynomial

\( x^{14} + 37 x^{12} + 470 x^{10} + 2787 x^{8} + 8570 x^{6} + 13714 x^{4} + 10241 x^{2} + 2401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-654698590982350051753984=-\,2^{14}\cdot 43^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.25$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(172=2^{2}\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{172}(1,·)$, $\chi_{172}(35,·)$, $\chi_{172}(133,·)$, $\chi_{172}(97,·)$, $\chi_{172}(41,·)$, $\chi_{172}(11,·)$, $\chi_{172}(47,·)$, $\chi_{172}(145,·)$, $\chi_{172}(107,·)$, $\chi_{172}(21,·)$, $\chi_{172}(87,·)$, $\chi_{172}(121,·)$, $\chi_{172}(59,·)$, $\chi_{172}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} + \frac{1}{7} a$, $\frac{1}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{49} a^{10} + \frac{1}{49} a^{8} - \frac{1}{7} a^{6} + \frac{1}{49} a^{4} + \frac{8}{49} a^{2}$, $\frac{1}{343} a^{11} + \frac{22}{343} a^{9} - \frac{1}{49} a^{7} + \frac{1}{343} a^{5} - \frac{20}{343} a^{3} + \frac{3}{7} a$, $\frac{1}{12691} a^{12} - \frac{34}{12691} a^{10} + \frac{5}{1813} a^{8} + \frac{1079}{12691} a^{6} + \frac{2668}{12691} a^{4} - \frac{127}{1813} a^{2} + \frac{10}{37}$, $\frac{1}{12691} a^{13} + \frac{3}{12691} a^{11} + \frac{849}{12691} a^{9} + \frac{820}{12691} a^{7} + \frac{2705}{12691} a^{5} - \frac{1629}{12691} a^{3} - \frac{78}{259} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{43}$, which has order $43$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{303}{12691} a^{13} + \frac{1483}{1813} a^{11} + \frac{113909}{12691} a^{9} + \frac{530252}{12691} a^{7} + \frac{160140}{1813} a^{5} + \frac{983120}{12691} a^{3} + \frac{662}{37} a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 35991.6418506 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{14}$ (as 14T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 14
The 14 conjugacy class representatives for $C_{14}$
Character table for $C_{14}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 7.7.6321363049.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.14.0.1}{14} }$ ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/11.14.0.1}{14} }$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/19.14.0.1}{14} }$ ${\href{/LocalNumberField/23.14.0.1}{14} }$ ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/31.14.0.1}{14} }$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ R ${\href{/LocalNumberField/47.14.0.1}{14} }$ ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/59.14.0.1}{14} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.14.38$x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$$2$$7$$14$$C_{14}$$[2]^{7}$
$43$43.14.12.1$x^{14} + 3569 x^{7} + 4043763$$7$$2$$12$$C_{14}$$[\ ]_{7}^{2}$