Normalized defining polynomial
\( x^{14} - 7 x^{13} + 21 x^{12} + 7 x^{11} + 154 x^{10} - 2058 x^{9} + 12670 x^{8} - 44565 x^{7} + 173194 x^{6} - 555058 x^{5} + 1703975 x^{4} - 3648323 x^{3} + 8318800 x^{2} - 12694353 x + 19486321 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-652300651772147469026072062247=-\,7^{24}\cdot 23^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1127=7^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1127}(1,·)$, $\chi_{1127}(162,·)$, $\chi_{1127}(323,·)$, $\chi_{1127}(484,·)$, $\chi_{1127}(645,·)$, $\chi_{1127}(806,·)$, $\chi_{1127}(967,·)$, $\chi_{1127}(22,·)$, $\chi_{1127}(183,·)$, $\chi_{1127}(344,·)$, $\chi_{1127}(505,·)$, $\chi_{1127}(666,·)$, $\chi_{1127}(827,·)$, $\chi_{1127}(988,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{31} a^{10} + \frac{9}{31} a^{9} - \frac{6}{31} a^{8} + \frac{3}{31} a^{7} + \frac{11}{31} a^{6} + \frac{3}{31} a^{5} + \frac{2}{31} a^{4} + \frac{10}{31} a^{3} + \frac{11}{31} a^{2} + \frac{10}{31} a$, $\frac{1}{31} a^{11} + \frac{6}{31} a^{9} - \frac{5}{31} a^{8} + \frac{15}{31} a^{7} - \frac{3}{31} a^{6} + \frac{6}{31} a^{5} - \frac{8}{31} a^{4} + \frac{14}{31} a^{3} + \frac{4}{31} a^{2} + \frac{3}{31} a$, $\frac{1}{589} a^{12} - \frac{9}{589} a^{11} - \frac{1}{589} a^{10} - \frac{277}{589} a^{9} + \frac{102}{589} a^{8} - \frac{283}{589} a^{7} - \frac{230}{589} a^{6} - \frac{238}{589} a^{5} - \frac{176}{589} a^{4} - \frac{15}{31} a^{3} + \frac{293}{589} a^{2} - \frac{35}{589} a + \frac{7}{19}$, $\frac{1}{119498557037247221462377659843307} a^{13} - \frac{21171491709700295636341060489}{119498557037247221462377659843307} a^{12} - \frac{510617294722728787847180411071}{119498557037247221462377659843307} a^{11} - \frac{240041903321169532876287762303}{119498557037247221462377659843307} a^{10} - \frac{21836611061260366731519677430115}{119498557037247221462377659843307} a^{9} - \frac{50115114132900643540147757306327}{119498557037247221462377659843307} a^{8} + \frac{57397883941821085806232431443751}{119498557037247221462377659843307} a^{7} + \frac{4376815724103568861851630845170}{119498557037247221462377659843307} a^{6} - \frac{7543948309392285930185995218828}{119498557037247221462377659843307} a^{5} - \frac{47424367847492490135950691652961}{119498557037247221462377659843307} a^{4} + \frac{55345190169601230503301807600484}{119498557037247221462377659843307} a^{3} + \frac{38521795653165302595113900470744}{119498557037247221462377659843307} a^{2} - \frac{27462738557882809113511524192893}{119498557037247221462377659843307} a - \frac{255466179587515296375686628069}{3854792162491845853625085801397}$
Class group and class number
$C_{19659}$, which has order $19659$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $23$ | 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |