Normalized defining polynomial
\( x^{14} - x^{13} + 35 x^{12} + 957 x^{11} - 16886 x^{10} - 96498 x^{9} + 3261324 x^{8} - 26254395 x^{7} + 106373950 x^{6} - 206239922 x^{5} + 54692142 x^{4} + 683421421 x^{3} - 65709808 x^{2} - 3237370650 x + 7873416461 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-646463729067293446729771507117629989287=-\,967^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $591.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $967$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(967\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{967}(1,·)$, $\chi_{967}(226,·)$, $\chi_{967}(261,·)$, $\chi_{967}(870,·)$, $\chi_{967}(97,·)$, $\chi_{967}(648,·)$, $\chi_{967}(706,·)$, $\chi_{967}(175,·)$, $\chi_{967}(536,·)$, $\chi_{967}(319,·)$, $\chi_{967}(792,·)$, $\chi_{967}(966,·)$, $\chi_{967}(431,·)$, $\chi_{967}(741,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6893} a^{12} - \frac{2813}{6893} a^{11} - \frac{838}{6893} a^{10} - \frac{1945}{6893} a^{9} + \frac{3141}{6893} a^{8} + \frac{1349}{6893} a^{7} - \frac{2157}{6893} a^{6} - \frac{473}{6893} a^{5} + \frac{230}{6893} a^{4} + \frac{3236}{6893} a^{3} - \frac{3038}{6893} a^{2} - \frac{1240}{6893} a + \frac{6}{113}$, $\frac{1}{644584180745870782164520926853011313969689170291801728065797} a^{13} + \frac{4455192274822787934826618655167460888737121442450120087}{644584180745870782164520926853011313969689170291801728065797} a^{12} + \frac{69363662467496189239035212227277608967005242545426160619628}{644584180745870782164520926853011313969689170291801728065797} a^{11} - \frac{193744589433958309594390076281516487252999093780814141894592}{644584180745870782164520926853011313969689170291801728065797} a^{10} + \frac{220656490716998570399208222896879638857814352274498685596038}{644584180745870782164520926853011313969689170291801728065797} a^{9} - \frac{200805636145032112588561062437264360955281605102798860161593}{644584180745870782164520926853011313969689170291801728065797} a^{8} - \frac{3063588612522355877012117002348167073664121746502075901457}{8829920284190010714582478450041250876297111921805503124189} a^{7} + \frac{164232645950861181891765921660377788005343232736505766459193}{644584180745870782164520926853011313969689170291801728065797} a^{6} + \frac{207775005853585706836174306938882849354592095314363824511018}{644584180745870782164520926853011313969689170291801728065797} a^{5} - \frac{258826876791330249955232022737869045305996244130904469103674}{644584180745870782164520926853011313969689170291801728065797} a^{4} - \frac{177432544993138358903826620895751606794954643544892453638293}{644584180745870782164520926853011313969689170291801728065797} a^{3} - \frac{205587999489995968447784863162776174329308728905406085880464}{644584180745870782164520926853011313969689170291801728065797} a^{2} - \frac{37918301019800597487078066278192143195609321918663081866161}{644584180745870782164520926853011313969689170291801728065797} a - \frac{1356589821242649105543153823474185399112128610426150614527}{10566953782719193150238047981196906786388347053963962755177}$
Class group and class number
$C_{2}\times C_{2}\times C_{45298}$, which has order $181192$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 193748644.5997488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-967}) \), 7.7.817633815294109969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 967 | Data not computed | ||||||