Normalized defining polynomial
\( x^{14} - 5 x^{13} - 157 x^{12} + 973 x^{11} + 7020 x^{10} - 54802 x^{9} - 32628 x^{8} + 542193 x^{7} + 1063886 x^{6} - 3813892 x^{5} - 9544515 x^{4} + 1156817 x^{3} + 52095720 x^{2} + 85068297 x + 73732261 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6413214172956389772541350262917703=-\,7^{7}\cdot 211^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $259.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1477=7\cdot 211\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1477}(1056,·)$, $\chi_{1477}(1,·)$, $\chi_{1477}(804,·)$, $\chi_{1477}(902,·)$, $\chi_{1477}(1254,·)$, $\chi_{1477}(545,·)$, $\chi_{1477}(1226,·)$, $\chi_{1477}(967,·)$, $\chi_{1477}(1324,·)$, $\chi_{1477}(1203,·)$, $\chi_{1477}(148,·)$, $\chi_{1477}(566,·)$, $\chi_{1477}(988,·)$, $\chi_{1477}(832,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{23} a^{9} - \frac{1}{23} a^{8} + \frac{4}{23} a^{7} + \frac{3}{23} a^{6} + \frac{4}{23} a^{5} - \frac{9}{23} a^{4} - \frac{7}{23} a^{3} - \frac{4}{23} a^{2} + \frac{4}{23} a - \frac{6}{23}$, $\frac{1}{437} a^{10} + \frac{6}{437} a^{9} + \frac{43}{437} a^{8} - \frac{2}{23} a^{7} + \frac{117}{437} a^{6} + \frac{1}{23} a^{5} + \frac{183}{437} a^{4} - \frac{168}{437} a^{3} + \frac{137}{437} a^{2} - \frac{185}{437} a - \frac{203}{437}$, $\frac{1}{59869} a^{11} + \frac{16}{59869} a^{10} + \frac{1034}{59869} a^{9} + \frac{23496}{59869} a^{8} + \frac{27496}{59869} a^{7} + \frac{8789}{59869} a^{6} - \frac{21686}{59869} a^{5} + \frac{24310}{59869} a^{4} + \frac{8546}{59869} a^{3} + \frac{26303}{59869} a^{2} + \frac{23084}{59869} a + \frac{11612}{59869}$, $\frac{1}{1137511} a^{12} - \frac{9}{1137511} a^{11} + \frac{771}{1137511} a^{10} - \frac{11944}{1137511} a^{9} - \frac{423863}{1137511} a^{8} - \frac{246513}{1137511} a^{7} - \frac{196749}{1137511} a^{6} - \frac{430489}{1137511} a^{5} + \frac{297872}{1137511} a^{4} - \frac{197348}{1137511} a^{3} + \frac{204223}{1137511} a^{2} - \frac{512743}{1137511} a - \frac{435246}{1137511}$, $\frac{1}{4398185456937173580085739594353799} a^{13} - \frac{708597886760637419578309647}{4398185456937173580085739594353799} a^{12} + \frac{16901440114893995352989804165}{4398185456937173580085739594353799} a^{11} + \frac{52593429546585702700273508190}{231483445101956504215038926018621} a^{10} - \frac{35097617309908084027455493762620}{4398185456937173580085739594353799} a^{9} - \frac{59252676647488697192364298330562}{231483445101956504215038926018621} a^{8} + \frac{2058599544748064435029298805355361}{4398185456937173580085739594353799} a^{7} - \frac{71602291491883446613206788779982}{231483445101956504215038926018621} a^{6} + \frac{1128359817220099246401682357923039}{4398185456937173580085739594353799} a^{5} + \frac{101095756027359204872582260384544}{4398185456937173580085739594353799} a^{4} - \frac{1683958596313664814862757974691384}{4398185456937173580085739594353799} a^{3} + \frac{1225902285013575015494523019587063}{4398185456937173580085739594353799} a^{2} - \frac{237976145592082963506862710606381}{4398185456937173580085739594353799} a + \frac{1539736817714672186860098920263973}{4398185456937173580085739594353799}$
Class group and class number
$C_{44303}$, which has order $44303$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2943138.716633699 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.88245939632761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 211 | Data not computed | ||||||