Normalized defining polynomial
\( x^{14} - 2 x^{13} + 74 x^{11} + 549 x^{10} - 1392 x^{9} - 3200 x^{8} + 11296 x^{7} + 87904 x^{6} - 223603 x^{5} + 203477 x^{4} - 1200614 x^{3} + 6395526 x^{2} - 9406012 x + 4742837 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-618204963477212079917000639=-\,6719^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $6719$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} + \frac{6}{19} a^{9} - \frac{5}{19} a^{8} - \frac{7}{19} a^{7} + \frac{4}{19} a^{6} + \frac{2}{19} a^{5} + \frac{7}{19} a^{3} - \frac{8}{19} a$, $\frac{1}{19} a^{11} - \frac{3}{19} a^{9} + \frac{4}{19} a^{8} + \frac{8}{19} a^{7} - \frac{3}{19} a^{6} + \frac{7}{19} a^{5} + \frac{7}{19} a^{4} - \frac{4}{19} a^{3} - \frac{8}{19} a^{2} - \frac{9}{19} a$, $\frac{1}{20299961} a^{12} + \frac{410437}{20299961} a^{11} - \frac{239710}{20299961} a^{10} + \frac{370347}{1845451} a^{9} + \frac{446747}{1068419} a^{8} + \frac{9309991}{20299961} a^{7} + \frac{3714346}{20299961} a^{6} + \frac{2649962}{20299961} a^{5} - \frac{3079189}{20299961} a^{4} + \frac{482290}{20299961} a^{3} + \frac{10085655}{20299961} a^{2} + \frac{9242545}{20299961} a - \frac{31089}{97129}$, $\frac{1}{3812413830515554858213707883344197} a^{13} + \frac{70772556679286885009599105}{3812413830515554858213707883344197} a^{12} - \frac{33394953196473128563957921950087}{3812413830515554858213707883344197} a^{11} + \frac{5161655119104643353918157200269}{346583075501414078019427989394927} a^{10} - \frac{233843268899416256247624526601445}{3812413830515554858213707883344197} a^{9} - \frac{1110220581266718542140718642345937}{3812413830515554858213707883344197} a^{8} - \frac{843056575983404299770815002302644}{3812413830515554858213707883344197} a^{7} - \frac{796541261093626680786160532549610}{3812413830515554858213707883344197} a^{6} - \frac{1787948559787743354246780752860525}{3812413830515554858213707883344197} a^{5} - \frac{961209355307697969170256056147270}{3812413830515554858213707883344197} a^{4} - \frac{284262990155146846027637229063081}{3812413830515554858213707883344197} a^{3} + \frac{1621801157500106445934077081129861}{3812413830515554858213707883344197} a^{2} + \frac{165824423483225296640408938645886}{346583075501414078019427989394927} a - \frac{83394160231918577228389240121}{793096282611931528648576634771}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5562647.9127 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-6719}) \), 7.1.303328992959.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.303328992959.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 6719 | Data not computed | ||||||