Normalized defining polynomial
\( x^{14} - 7 x^{13} + 35 x^{12} - 119 x^{11} + 329 x^{10} - 721 x^{9} + 1337 x^{8} + 120355 x^{7} - 425726 x^{6} - 3858484 x^{5} + 10712632 x^{4} + 2140096 x^{3} - 14136080 x^{2} + 3855152 x + 3746235728 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-612238383051472862311374717543000000000000=-\,2^{12}\cdot 3^{12}\cdot 5^{12}\cdot 7^{11}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $965.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{6} - \frac{1}{7} a^{5} - \frac{3}{14} a^{4} + \frac{3}{7} a^{3} + \frac{1}{7} a^{2} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{14} a^{7} - \frac{1}{2} a^{3} + \frac{1}{7}$, $\frac{1}{420} a^{8} - \frac{1}{105} a^{7} + \frac{1}{30} a^{6} - \frac{1}{15} a^{5} + \frac{7}{60} a^{4} - \frac{2}{15} a^{3} + \frac{2}{15} a^{2} - \frac{38}{105} a + \frac{19}{105}$, $\frac{1}{420} a^{9} - \frac{1}{210} a^{7} - \frac{1}{210} a^{6} - \frac{1}{140} a^{5} + \frac{1}{21} a^{4} + \frac{6}{35} a^{3} - \frac{33}{70} a^{2} + \frac{2}{105} a + \frac{16}{105}$, $\frac{1}{2940} a^{10} - \frac{1}{2940} a^{9} - \frac{1}{1470} a^{8} - \frac{3}{98} a^{7} - \frac{13}{420} a^{6} - \frac{1}{420} a^{5} - \frac{1}{30} a^{4} + \frac{15}{98} a^{3} + \frac{223}{1470} a^{2} + \frac{314}{735} a + \frac{179}{735}$, $\frac{1}{2940} a^{11} - \frac{1}{980} a^{9} - \frac{1}{2940} a^{8} + \frac{17}{588} a^{7} - \frac{1}{35} a^{6} - \frac{19}{420} a^{5} - \frac{229}{2940} a^{4} - \frac{1}{2} a^{3} + \frac{223}{490} a^{2} - \frac{47}{147} a - \frac{99}{245}$, $\frac{1}{5880} a^{12} - \frac{1}{5880} a^{10} + \frac{1}{1470} a^{9} - \frac{1}{1960} a^{8} - \frac{19}{735} a^{7} - \frac{1}{168} a^{6} - \frac{71}{490} a^{5} + \frac{17}{420} a^{4} + \frac{4}{245} a^{3} - \frac{72}{245} a^{2} - \frac{23}{245} a - \frac{248}{735}$, $\frac{1}{308453407833076234644892779647880} a^{13} - \frac{12326655145680030711029857757}{308453407833076234644892779647880} a^{12} + \frac{39922561963686044500536865699}{308453407833076234644892779647880} a^{11} - \frac{8080193911362985758843480871}{102817802611025411548297593215960} a^{10} - \frac{104391035892629855784931964867}{308453407833076234644892779647880} a^{9} - \frac{137618507189009207131613937701}{308453407833076234644892779647880} a^{8} + \frac{249859629800147755502706844943}{44064772547582319234984682806840} a^{7} + \frac{1222268579383250437997182146229}{61690681566615246928978555929576} a^{6} - \frac{11334603551687359117261308505831}{51408901305512705774148796607980} a^{5} + \frac{2261857874126340606699004816225}{30845340783307623464489277964788} a^{4} - \frac{3681329334485235934190601360884}{38556675979134529330611597455985} a^{3} + \frac{17629628712681151121047936106743}{77113351958269058661223194911970} a^{2} - \frac{12594881579559526890938434774736}{38556675979134529330611597455985} a - \frac{18312141384506946649739016787}{786870938349684272053297907265}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795109679454562.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.1.295740809071407000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $5$ | 5.14.12.1 | $x^{14} - 5 x^{7} + 50$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $17$ | 17.14.12.1 | $x^{14} - 17 x^{7} + 867$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |