Normalized defining polynomial
\( x^{14} - 2 x^{13} + 75 x^{12} - 130 x^{11} + 3042 x^{10} - 4256 x^{9} + 81987 x^{8} - 84712 x^{7} + 1509222 x^{6} - 1077430 x^{5} + 18374426 x^{4} - 8526420 x^{3} + 133911229 x^{2} - 31573230 x + 441622847 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-611071689763862013138201214976=-\,2^{21}\cdot 7^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1624=2^{3}\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1624}(1,·)$, $\chi_{1624}(1301,·)$, $\chi_{1624}(517,·)$, $\chi_{1624}(1009,·)$, $\chi_{1624}(393,·)$, $\chi_{1624}(1357,·)$, $\chi_{1624}(1457,·)$, $\chi_{1624}(741,·)$, $\chi_{1624}(181,·)$, $\chi_{1624}(169,·)$, $\chi_{1624}(953,·)$, $\chi_{1624}(281,·)$, $\chi_{1624}(349,·)$, $\chi_{1624}(629,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{4}{17} a^{11} + \frac{8}{17} a^{10} - \frac{4}{17} a^{9} - \frac{5}{17} a^{8} + \frac{5}{17} a^{7} + \frac{5}{17} a^{6} - \frac{1}{17} a^{5} - \frac{6}{17} a^{4} - \frac{5}{17} a^{2} + \frac{2}{17} a - \frac{7}{17}$, $\frac{1}{1318376291114455623192126756862704345073} a^{13} - \frac{20744512155954438374750905079008890804}{1318376291114455623192126756862704345073} a^{12} + \frac{135404735998830728161084077092235971994}{1318376291114455623192126756862704345073} a^{11} - \frac{347075195252540517985309201433623831760}{1318376291114455623192126756862704345073} a^{10} - \frac{18231017659813222129246778809175903932}{77551546536144448423066279815453196769} a^{9} + \frac{110855116743649024287708259401818212234}{1318376291114455623192126756862704345073} a^{8} - \frac{4585322574395273480325174995758945920}{22345360866346705477832656895978039747} a^{7} - \frac{155859224695704816603173725722862466047}{1318376291114455623192126756862704345073} a^{6} + \frac{619149398005478731416253616296737288173}{1318376291114455623192126756862704345073} a^{5} + \frac{37121319560502805031073807698948668291}{1318376291114455623192126756862704345073} a^{4} - \frac{65297502663264216877689982594221801017}{1318376291114455623192126756862704345073} a^{3} + \frac{150997661627346694799317373883207089930}{1318376291114455623192126756862704345073} a^{2} - \frac{443100289723156263841262864212689658444}{1318376291114455623192126756862704345073} a + \frac{7005310535650081296883382499222984685}{22345360866346705477832656895978039747}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{1964}$, which has order $125696$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.34 | $x^{14} + 4 x^{13} + 8 x^{12} + 4 x^{11} + 5 x^{10} + 8 x^{9} - 6 x^{8} - 6 x^{7} + x^{6} + 6 x^{5} + 2 x^{3} + 7 x^{2} + 6 x - 7$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |