Normalized defining polynomial
\( x^{14} - 5 x^{13} + 13 x^{12} - 19 x^{11} + 150 x^{10} - 514 x^{9} + 2438 x^{8} - 6347 x^{7} + 22552 x^{6} - 42720 x^{5} + 123031 x^{4} - 143071 x^{3} + 363084 x^{2} - 231593 x + 499381 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-60452572724246936927109375=-\,3^{7}\cdot 5^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(435=3\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{435}(256,·)$, $\chi_{435}(1,·)$, $\chi_{435}(226,·)$, $\chi_{435}(136,·)$, $\chi_{435}(74,·)$, $\chi_{435}(194,·)$, $\chi_{435}(239,·)$, $\chi_{435}(16,·)$, $\chi_{435}(181,·)$, $\chi_{435}(344,·)$, $\chi_{435}(314,·)$, $\chi_{435}(59,·)$, $\chi_{435}(284,·)$, $\chi_{435}(286,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} + \frac{2}{17} a^{9} - \frac{1}{17} a^{8} + \frac{5}{17} a^{7} - \frac{2}{17} a^{6} - \frac{3}{17} a^{5} - \frac{1}{17} a^{4} - \frac{8}{17} a^{3} + \frac{6}{17} a^{2} + \frac{4}{17} a - \frac{3}{17}$, $\frac{1}{17} a^{11} - \frac{5}{17} a^{9} + \frac{7}{17} a^{8} + \frac{5}{17} a^{7} + \frac{1}{17} a^{6} + \frac{5}{17} a^{5} - \frac{6}{17} a^{4} + \frac{5}{17} a^{3} - \frac{8}{17} a^{2} + \frac{6}{17} a + \frac{6}{17}$, $\frac{1}{289} a^{12} + \frac{7}{289} a^{11} + \frac{2}{289} a^{10} - \frac{82}{289} a^{9} + \frac{132}{289} a^{8} - \frac{99}{289} a^{7} - \frac{19}{289} a^{6} - \frac{60}{289} a^{5} - \frac{61}{289} a^{4} + \frac{107}{289} a^{3} + \frac{60}{289} a^{2} + \frac{76}{289} a - \frac{64}{289}$, $\frac{1}{49954749402653209833685051} a^{13} + \frac{20474162711788568925686}{49954749402653209833685051} a^{12} + \frac{1225849218386583202897417}{49954749402653209833685051} a^{11} + \frac{952048006077019298479002}{49954749402653209833685051} a^{10} + \frac{17680312965927867478938792}{49954749402653209833685051} a^{9} - \frac{1526592645538728788182583}{49954749402653209833685051} a^{8} - \frac{4966238526598083748174929}{49954749402653209833685051} a^{7} - \frac{1367605032513507511513955}{2938514670744306460805003} a^{6} - \frac{13285375263035467735229979}{49954749402653209833685051} a^{5} - \frac{127883435499842342574017}{49954749402653209833685051} a^{4} + \frac{17437663692467984491694208}{49954749402653209833685051} a^{3} + \frac{12355859171554516684875995}{49954749402653209833685051} a^{2} + \frac{689628757311151956732043}{49954749402653209833685051} a - \frac{3400837463200400316087036}{49954749402653209833685051}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{226}$, which has order $1808$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |