Normalized defining polynomial
\( x^{14} - 3 x^{13} + 7 x^{12} - 18 x^{11} + 19 x^{10} + 14 x^{9} - 32 x^{8} + 96 x^{7} + 161 x^{6} + 22 x^{5} + 319 x^{4} + 154 x^{3} - 63 x^{2} + 49 x + 49 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5994559163049015798603=-\,3^{7}\cdot 7^{6}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{7} a^{8} + \frac{2}{7} a^{5} + \frac{1}{7} a^{2}$, $\frac{1}{35} a^{9} + \frac{9}{35} a^{6} + \frac{1}{35} a^{3} + \frac{2}{5}$, $\frac{1}{105} a^{10} + \frac{1}{105} a^{9} + \frac{3}{35} a^{7} + \frac{44}{105} a^{6} + \frac{12}{35} a^{4} + \frac{1}{105} a^{3} - \frac{1}{3} a^{2} - \frac{1}{5} a + \frac{7}{15}$, $\frac{1}{105} a^{11} - \frac{1}{105} a^{9} - \frac{2}{35} a^{8} + \frac{1}{3} a^{7} - \frac{44}{105} a^{6} + \frac{2}{35} a^{5} - \frac{1}{3} a^{4} - \frac{12}{35} a^{3} - \frac{1}{105} a^{2} - \frac{1}{3} a - \frac{7}{15}$, $\frac{1}{5985} a^{12} + \frac{4}{1197} a^{11} - \frac{8}{1995} a^{10} - \frac{16}{5985} a^{9} + \frac{64}{1197} a^{8} + \frac{239}{5985} a^{7} + \frac{223}{855} a^{6} + \frac{431}{1197} a^{5} + \frac{221}{5985} a^{4} + \frac{306}{665} a^{3} - \frac{1}{57} a^{2} - \frac{413}{855} a - \frac{41}{171}$, $\frac{1}{784035} a^{13} + \frac{58}{784035} a^{12} + \frac{2104}{784035} a^{11} + \frac{487}{156807} a^{10} + \frac{2}{399} a^{9} + \frac{1136}{37335} a^{8} + \frac{46486}{156807} a^{7} + \frac{1897}{7467} a^{6} + \frac{171544}{784035} a^{5} + \frac{33626}{156807} a^{4} - \frac{3834}{17423} a^{3} - \frac{357659}{784035} a^{2} - \frac{25133}{112005} a - \frac{1421}{5895}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{167}{13755} a^{13} + \frac{221}{4585} a^{12} - \frac{247}{1965} a^{11} + \frac{4433}{13755} a^{10} - \frac{52}{105} a^{9} + \frac{2509}{13755} a^{8} + \frac{1664}{4585} a^{7} - \frac{21073}{13755} a^{6} - \frac{2483}{4585} a^{5} + \frac{1859}{1965} a^{4} - \frac{18304}{4585} a^{3} + \frac{31174}{13755} a^{2} + \frac{689}{655} a - \frac{973}{1965} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1933477.60794 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 28 |
| The 10 conjugacy class representatives for $D_{14}$ |
| Character table for $D_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.1.1655595487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 14 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $13$ | 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |