Normalized defining polynomial
\( x^{14} - x^{13} + 518 x^{12} - 1833 x^{11} + 102790 x^{10} - 520762 x^{9} + 8805688 x^{8} - 50472370 x^{7} + 317860920 x^{6} - 1273665671 x^{5} + 11573214816 x^{4} + 37382582628 x^{3} + 232439703661 x^{2} + 365724334139 x + 757415595679 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-595490711098343828041968400200063015271=-\,7^{7}\cdot 337^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $588.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2359=7\cdot 337\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2359}(512,·)$, $\chi_{2359}(1,·)$, $\chi_{2359}(258,·)$, $\chi_{2359}(295,·)$, $\chi_{2359}(8,·)$, $\chi_{2359}(64,·)$, $\chi_{2359}(2295,·)$, $\chi_{2359}(622,·)$, $\chi_{2359}(2351,·)$, $\chi_{2359}(2064,·)$, $\chi_{2359}(1847,·)$, $\chi_{2359}(2101,·)$, $\chi_{2359}(2358,·)$, $\chi_{2359}(1737,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{13} - \frac{5956523599322580243264949025124982500201691731809494563546290807963730866}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{12} + \frac{17331365637002940419544986206603877363701770536915558419573631045423558460}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{11} + \frac{16786726961506608984326904472240220973958670738969041662604019593410453925}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{10} - \frac{4715042873447171705540884848678468613789075567814538871872842657317993819}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{9} + \frac{2849864462890581759545049679815502860627356270453551717590185831411738651}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{8} - \frac{14210264696219808987037669856536954208134807532518295396427962738540700740}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{7} - \frac{23468391461939134568416552947473928962892999636689775902459008481253228150}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{6} - \frac{15858816147346342335889942543142331856465615863821519001915155591991241204}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{5} - \frac{14486997350897276146645117939838768570012103602561154339260095272194174653}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{4} + \frac{13608467845858425413742216279286094795775531778249587164309197177108965792}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{3} - \frac{412466292833077941844936040155370705933828082841135137170228792656169965}{55657576968377806953723067618236774051900928540347952761119886814874294837} a^{2} + \frac{1860541459993440595164791540107651407352890599231392842269205901770429906}{55657576968377806953723067618236774051900928540347952761119886814874294837} a - \frac{22966925924533832861230448450290190729169063575859602911877225698287440774}{55657576968377806953723067618236774051900928540347952761119886814874294837}$
Class group and class number
$C_{2985668}$, which has order $2985668$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5486180.267403393 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-2359}) \), 7.7.1464803622199009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 337 | Data not computed | ||||||