Normalized defining polynomial
\( x^{14} - 7 x^{12} + 50 x^{10} - 238 x^{8} + 1369 x^{6} - 1935 x^{4} + 4212 x^{2} + 26244 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5796901408038404767744=-\,2^{14}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{24} a^{7} - \frac{1}{12} a^{5} + \frac{7}{24} a^{3} - \frac{1}{2} a^{2} + \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{24} a^{8} - \frac{1}{12} a^{6} - \frac{5}{24} a^{4} - \frac{1}{2} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{48} a^{9} - \frac{1}{48} a^{8} - \frac{1}{12} a^{6} + \frac{1}{16} a^{5} + \frac{5}{48} a^{4} - \frac{1}{2} a^{3} + \frac{5}{12} a^{2} + \frac{5}{12} a + \frac{1}{4}$, $\frac{1}{288} a^{10} + \frac{5}{288} a^{8} + \frac{35}{288} a^{6} - \frac{1}{288} a^{4} + \frac{19}{72} a^{2} + \frac{3}{8}$, $\frac{1}{5184} a^{11} - \frac{1}{576} a^{10} + \frac{29}{5184} a^{9} - \frac{5}{576} a^{8} - \frac{13}{5184} a^{7} - \frac{35}{576} a^{6} + \frac{455}{5184} a^{5} + \frac{1}{576} a^{4} - \frac{497}{1296} a^{3} + \frac{53}{144} a^{2} + \frac{11}{144} a + \frac{5}{16}$, $\frac{1}{8802432} a^{12} + \frac{169}{1100304} a^{10} + \frac{1789}{4401216} a^{8} + \frac{103477}{1100304} a^{6} + \frac{859393}{8802432} a^{4} - \frac{1}{2} a^{3} + \frac{28877}{61128} a^{2} - \frac{1}{2} a + \frac{2219}{9056}$, $\frac{1}{52814592} a^{13} - \frac{1}{17604864} a^{12} + \frac{169}{6601824} a^{11} - \frac{169}{2200608} a^{10} - \frac{181595}{26407296} a^{9} - \frac{1789}{8802432} a^{8} - \frac{79907}{6601824} a^{7} + \frac{171599}{2200608} a^{6} - \frac{6109199}{52814592} a^{5} + \frac{3541823}{17604864} a^{4} - \frac{42439}{366768} a^{3} - \frac{44159}{122256} a^{2} - \frac{6807}{18112} a - \frac{6747}{18112}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{253}{13203648} a^{13} + \frac{379}{6601824} a^{11} - \frac{103}{206307} a^{9} + \frac{24289}{6601824} a^{7} - \frac{398105}{13203648} a^{5} + \frac{12515}{61128} a^{3} - \frac{9817}{40752} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4434400.28009 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.1.38068692544.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.38068692544.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $29$ | 29.7.6.1 | $x^{7} + 232$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.1 | $x^{7} + 232$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |