Normalized defining polynomial
\( x^{14} + 25 x^{12} + 214 x^{10} + 767 x^{8} + 1194 x^{6} + 686 x^{4} + 53 x^{2} + 1 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5796901408038404767744=-\,2^{14}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(116=2^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{116}(1,·)$, $\chi_{116}(107,·)$, $\chi_{116}(81,·)$, $\chi_{116}(65,·)$, $\chi_{116}(103,·)$, $\chi_{116}(45,·)$, $\chi_{116}(111,·)$, $\chi_{116}(49,·)$, $\chi_{116}(83,·)$, $\chi_{116}(53,·)$, $\chi_{116}(23,·)$, $\chi_{116}(7,·)$, $\chi_{116}(25,·)$, $\chi_{116}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} + \frac{7}{17} a^{8} + \frac{7}{17} a^{6} + \frac{6}{17} a^{4} - \frac{8}{17} a^{2} + \frac{4}{17}$, $\frac{1}{17} a^{11} + \frac{7}{17} a^{9} + \frac{7}{17} a^{7} + \frac{6}{17} a^{5} - \frac{8}{17} a^{3} + \frac{4}{17} a$, $\frac{1}{11849} a^{12} - \frac{52}{11849} a^{10} + \frac{4218}{11849} a^{8} - \frac{4096}{11849} a^{6} - \frac{3337}{11849} a^{4} - \frac{179}{697} a^{2} - \frac{2616}{11849}$, $\frac{1}{11849} a^{13} - \frac{52}{11849} a^{11} + \frac{4218}{11849} a^{9} - \frac{4096}{11849} a^{7} - \frac{3337}{11849} a^{5} - \frac{179}{697} a^{3} - \frac{2616}{11849} a$
Class group and class number
$C_{2}\times C_{2}\times C_{14}$, which has order $56$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1059}{11849} a^{13} + \frac{26481}{11849} a^{11} + \frac{227011}{11849} a^{9} + \frac{818742}{11849} a^{7} + \frac{1303994}{11849} a^{5} + \frac{47378}{697} a^{3} + \frac{91538}{11849} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.98510015 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |