Normalized defining polynomial
\( x^{14} + 336 x^{12} - 756 x^{11} + 34559 x^{10} - 139706 x^{9} + 1381653 x^{8} - 6345898 x^{7} + 26899726 x^{6} - 93323468 x^{5} + 204461971 x^{4} - 300869401 x^{3} + 374349388 x^{2} - 383621049 x + 400484527 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-57154256495392789026772590782439=-\,3^{7}\cdot 7^{25}\cdot 11^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $185.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1617=3\cdot 7^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1617}(1,·)$, $\chi_{1617}(1154,·)$, $\chi_{1617}(1156,·)$, $\chi_{1617}(230,·)$, $\chi_{1617}(232,·)$, $\chi_{1617}(1385,·)$, $\chi_{1617}(1387,·)$, $\chi_{1617}(461,·)$, $\chi_{1617}(463,·)$, $\chi_{1617}(1616,·)$, $\chi_{1617}(692,·)$, $\chi_{1617}(694,·)$, $\chi_{1617}(923,·)$, $\chi_{1617}(925,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{19} a^{12} - \frac{3}{19} a^{11} - \frac{3}{19} a^{10} - \frac{7}{19} a^{9} - \frac{1}{19} a^{8} + \frac{8}{19} a^{7} - \frac{7}{19} a^{6} - \frac{1}{19} a^{5} + \frac{8}{19} a^{4} - \frac{8}{19} a^{3} + \frac{2}{19} a^{2} - \frac{8}{19} a$, $\frac{1}{63940198442179426129939496143823412219299924941987709883241} a^{13} - \frac{353123196533850355896584240166921364289286742913848637390}{63940198442179426129939496143823412219299924941987709883241} a^{12} - \frac{12406397136930340634158060253131793056408453256899707558618}{63940198442179426129939496143823412219299924941987709883241} a^{11} + \frac{19733004951695341144527643277142183141793663175193041586986}{63940198442179426129939496143823412219299924941987709883241} a^{10} - \frac{8225967706848710507685978527197756371261777063445239067768}{63940198442179426129939496143823412219299924941987709883241} a^{9} + \frac{18826671435609993821937654837836285616389880121508634100162}{63940198442179426129939496143823412219299924941987709883241} a^{8} - \frac{16667057963422405866605848044474941810970313746775050517273}{63940198442179426129939496143823412219299924941987709883241} a^{7} - \frac{13091045086674513141917904391647220124078957170545864009884}{63940198442179426129939496143823412219299924941987709883241} a^{6} - \frac{30744088134126627466730929489553032699305455292755405766755}{63940198442179426129939496143823412219299924941987709883241} a^{5} - \frac{29226284704901805152687107968562480719081387117606791020332}{63940198442179426129939496143823412219299924941987709883241} a^{4} - \frac{9077235348521607763929477507005799180359122726401187334430}{63940198442179426129939496143823412219299924941987709883241} a^{3} - \frac{13771254530016500602569541575625664057820822129582022893040}{63940198442179426129939496143823412219299924941987709883241} a^{2} + \frac{2463015645691906513407065160047850104390088716462351083278}{63940198442179426129939496143823412219299924941987709883241} a - \frac{10066350215923791003470880767962195748287759672159267699}{50227964212238355168844851644794510777140553764326559217}$
Class group and class number
$C_{2}\times C_{190518}$, which has order $381036$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.25.75 | $x^{14} + 112 x^{13} + 28 x^{12} - 98 x^{11} + 147 x^{10} + 98 x^{9} + 49 x^{8} - 161 x^{7} + 49 x^{6} + 147 x^{5} + 147 x^{2} - 147 x - 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $11$ | 11.14.7.1 | $x^{14} - 2662 x^{8} + 1771561 x^{2} - 311794736$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |