Normalized defining polynomial
\( x^{14} + 205 x^{12} + 14494 x^{10} + 435247 x^{8} + 5615886 x^{6} + 31987214 x^{4} + 69660541 x^{2} + 26863489 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-569108078765853806807890636324864=-\,2^{14}\cdot 239^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $218.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(956=2^{2}\cdot 239\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{956}(1,·)$, $\chi_{956}(741,·)$, $\chi_{956}(679,·)$, $\chi_{956}(201,·)$, $\chi_{956}(263,·)$, $\chi_{956}(815,·)$, $\chi_{956}(337,·)$, $\chi_{956}(339,·)$, $\chi_{956}(727,·)$, $\chi_{956}(761,·)$, $\chi_{956}(249,·)$, $\chi_{956}(283,·)$, $\chi_{956}(817,·)$, $\chi_{956}(479,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{23} a^{8} - \frac{9}{23} a^{6} - \frac{6}{23} a^{2} + \frac{3}{23}$, $\frac{1}{23} a^{9} - \frac{9}{23} a^{7} - \frac{6}{23} a^{3} + \frac{3}{23} a$, $\frac{1}{23} a^{10} + \frac{11}{23} a^{6} - \frac{6}{23} a^{4} - \frac{5}{23} a^{2} + \frac{4}{23}$, $\frac{1}{23} a^{11} + \frac{11}{23} a^{7} - \frac{6}{23} a^{5} - \frac{5}{23} a^{3} + \frac{4}{23} a$, $\frac{1}{1001361807984563659} a^{12} - \frac{18818825425455192}{1001361807984563659} a^{10} + \frac{5526927947541028}{1001361807984563659} a^{8} - \frac{134606582226316430}{1001361807984563659} a^{6} - \frac{230413726877057565}{1001361807984563659} a^{4} + \frac{174487310541857067}{1001361807984563659} a^{2} - \frac{393710973931208615}{1001361807984563659}$, $\frac{1}{5190058250783993444597} a^{13} + \frac{56057442421710109712}{5190058250783993444597} a^{11} + \frac{43934834069531225025}{5190058250783993444597} a^{9} - \frac{1084435294749859269795}{5190058250783993444597} a^{7} - \frac{1339051151002238669648}{5190058250783993444597} a^{5} - \frac{1745416831356114462235}{5190058250783993444597} a^{3} - \frac{2563270414835640962993}{5190058250783993444597} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2746}$, which has order $10984$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{15908134595}{11563244558282317} a^{13} - \frac{3124618274613}{11563244558282317} a^{11} - \frac{203738163918955}{11563244558282317} a^{9} - \frac{5172401857793408}{11563244558282317} a^{7} - \frac{44754389668435730}{11563244558282317} a^{5} - \frac{119635996015976224}{11563244558282317} a^{3} - \frac{31437632774171868}{11563244558282317} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3022802.0673343516 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.7.186374892382561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| 239 | Data not computed | ||||||