Normalized defining polynomial
\( x^{14} + 169 x^{12} + 10186 x^{10} + 284395 x^{8} + 3790966 x^{6} + 20272254 x^{4} + 11329577 x^{2} + 1352569 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-55977648821440226023583557894144=-\,2^{14}\cdot 197^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $185.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(788=2^{2}\cdot 197\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{788}(1,·)$, $\chi_{788}(191,·)$, $\chi_{788}(395,·)$, $\chi_{788}(311,·)$, $\chi_{788}(705,·)$, $\chi_{788}(585,·)$, $\chi_{788}(375,·)$, $\chi_{788}(301,·)$, $\chi_{788}(627,·)$, $\chi_{788}(755,·)$, $\chi_{788}(695,·)$, $\chi_{788}(233,·)$, $\chi_{788}(769,·)$, $\chi_{788}(361,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{183328903859053111} a^{12} - \frac{14334329493014901}{183328903859053111} a^{10} + \frac{50036907682094334}{183328903859053111} a^{8} - \frac{86852188444878884}{183328903859053111} a^{6} + \frac{77831232864917001}{183328903859053111} a^{4} - \frac{81601665139696681}{183328903859053111} a^{2} + \frac{45190840461337261}{183328903859053111}$, $\frac{1}{213211515188078768093} a^{13} - \frac{65279424103315922417}{213211515188078768093} a^{11} + \frac{56148681488552346300}{213211515188078768093} a^{9} - \frac{53068905403711227963}{213211515188078768093} a^{7} - \frac{74903690445487805398}{213211515188078768093} a^{5} + \frac{98182690803312770815}{213211515188078768093} a^{3} + \frac{59077097883076439003}{213211515188078768093} a$
Class group and class number
$C_{2}\times C_{2}\times C_{1582}$, which has order $6328$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{40310893}{144316631450039} a^{13} - \frac{8389803843}{144316631450039} a^{11} - \frac{645004941341}{144316631450039} a^{9} - \frac{22736854425572}{144316631450039} a^{7} - \frac{369431084430812}{144316631450039} a^{5} - \frac{2278739116399986}{144316631450039} a^{3} - \frac{725438832932274}{144316631450039} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1553055.199048291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.7.58451728309129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $197$ | 197.7.6.1 | $x^{7} - 197$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 197.7.6.1 | $x^{7} - 197$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |