Normalized defining polynomial
\( x^{14} - x^{13} + 303 x^{12} + 420 x^{11} + 32127 x^{10} + 89886 x^{9} + 1369102 x^{8} + 3680571 x^{7} + 17975510 x^{6} + 7832183 x^{5} + 118057159 x^{4} - 56932186 x^{3} + 6537290446 x^{2} - 32497939521 x + 53109997117 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-554302988656067112295385411481137411=-\,7^{7}\cdot 197^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $357.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1379=7\cdot 197\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1379}(1,·)$, $\chi_{1379}(1378,·)$, $\chi_{1379}(36,·)$, $\chi_{1379}(6,·)$, $\chi_{1379}(230,·)$, $\chi_{1379}(1163,·)$, $\chi_{1379}(1149,·)$, $\chi_{1379}(1296,·)$, $\chi_{1379}(881,·)$, $\chi_{1379}(498,·)$, $\chi_{1379}(83,·)$, $\chi_{1379}(216,·)$, $\chi_{1379}(1373,·)$, $\chi_{1379}(1343,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{417799694974035573084435815463356245652238816611406970333566506281} a^{13} - \frac{165575095248928599699611293000724906738835638304031335874415676379}{417799694974035573084435815463356245652238816611406970333566506281} a^{12} - \frac{55562299371396589161223490523335970512680469163522991881642395185}{417799694974035573084435815463356245652238816611406970333566506281} a^{11} + \frac{161375477972943859534430782591964968426907002460766875260047712473}{417799694974035573084435815463356245652238816611406970333566506281} a^{10} - \frac{146047432649477111062641667201318298228517626720543823616379087396}{417799694974035573084435815463356245652238816611406970333566506281} a^{9} + \frac{51831490909751514777145837561422114034563827875976049550917855093}{417799694974035573084435815463356245652238816611406970333566506281} a^{8} + \frac{90749277517208188768860052723920873749333579920875787842096125976}{417799694974035573084435815463356245652238816611406970333566506281} a^{7} + \frac{63124834531384833571841112069925197150724971593385572577902629410}{417799694974035573084435815463356245652238816611406970333566506281} a^{6} - \frac{190129733188323646642113663382235198618404808183221563375815706527}{417799694974035573084435815463356245652238816611406970333566506281} a^{5} + \frac{200868495099015044193385054769234723224099514072099330202321664820}{417799694974035573084435815463356245652238816611406970333566506281} a^{4} - \frac{192641125104194413475092241299462804592602340787003989474602316086}{417799694974035573084435815463356245652238816611406970333566506281} a^{3} - \frac{41636971970349274994298049408848746796653345114520256979492308463}{417799694974035573084435815463356245652238816611406970333566506281} a^{2} + \frac{186843215663722532083211746759569297449342362451499952110027298727}{417799694974035573084435815463356245652238816611406970333566506281} a + \frac{151115259522302281884603956001490170480228249106772307699533360749}{417799694974035573084435815463356245652238816611406970333566506281}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{36304}$, which has order $290432$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1553055.199048291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1379}) \), 7.7.58451728309129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $197$ | 197.14.13.1 | $x^{14} - 197$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |