Normalized defining polynomial
\( x^{14} + 168 x^{12} - 392 x^{11} + 8659 x^{10} - 36134 x^{9} + 194649 x^{8} - 821778 x^{7} + 2490278 x^{6} - 6786024 x^{5} + 12547871 x^{4} - 13116425 x^{3} + 11092144 x^{2} - 10001649 x + 11183839 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-550292317794853063315721009111=-\,7^{25}\cdot 17^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(833=7^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{833}(832,·)$, $\chi_{833}(1,·)$, $\chi_{833}(356,·)$, $\chi_{833}(358,·)$, $\chi_{833}(713,·)$, $\chi_{833}(715,·)$, $\chi_{833}(237,·)$, $\chi_{833}(239,·)$, $\chi_{833}(594,·)$, $\chi_{833}(596,·)$, $\chi_{833}(118,·)$, $\chi_{833}(120,·)$, $\chi_{833}(475,·)$, $\chi_{833}(477,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{31} a^{11} - \frac{6}{31} a^{10} - \frac{7}{31} a^{9} - \frac{3}{31} a^{8} + \frac{13}{31} a^{7} - \frac{6}{31} a^{6} - \frac{12}{31} a^{5} - \frac{6}{31} a^{4} + \frac{8}{31} a^{3} + \frac{1}{31} a^{2} + \frac{8}{31} a$, $\frac{1}{31} a^{12} - \frac{12}{31} a^{10} - \frac{14}{31} a^{9} - \frac{5}{31} a^{8} + \frac{10}{31} a^{7} + \frac{14}{31} a^{6} + \frac{15}{31} a^{5} + \frac{3}{31} a^{4} - \frac{13}{31} a^{3} + \frac{14}{31} a^{2} - \frac{14}{31} a$, $\frac{1}{123821780050264737185583080121909825815954915159} a^{13} - \frac{1519462977114846217347852492220613932114876422}{123821780050264737185583080121909825815954915159} a^{12} - \frac{319293807824500388835726697454343538864210021}{123821780050264737185583080121909825815954915159} a^{11} - \frac{1394088542591474204157300246142629615685551654}{3994250969363378618889776778126123413417900489} a^{10} - \frac{12539369267472663703223115352078453126795363376}{123821780050264737185583080121909825815954915159} a^{9} - \frac{21356373944429267274872225449930732248701382760}{123821780050264737185583080121909825815954915159} a^{8} - \frac{24411085497891443574581745778783029555342650789}{123821780050264737185583080121909825815954915159} a^{7} - \frac{59584288907422309086581414056920421169809471752}{123821780050264737185583080121909825815954915159} a^{6} - \frac{39065894428796553141748485481740171781629134591}{123821780050264737185583080121909825815954915159} a^{5} - \frac{11908298752799062890583624846020425951556508421}{123821780050264737185583080121909825815954915159} a^{4} + \frac{13631391972367777820501600371407834425056320474}{123821780050264737185583080121909825815954915159} a^{3} + \frac{1964858047984978156425524950698111878803815314}{3994250969363378618889776778126123413417900489} a^{2} - \frac{5999416264921001701241461351476944837550897360}{123821780050264737185583080121909825815954915159} a + \frac{1365008547114992581242748443620945632020771732}{3994250969363378618889776778126123413417900489}$
Class group and class number
$C_{35570}$, which has order $35570$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.75 | $x^{14} + 112 x^{13} + 28 x^{12} - 98 x^{11} + 147 x^{10} + 98 x^{9} + 49 x^{8} - 161 x^{7} + 49 x^{6} + 147 x^{5} + 147 x^{2} - 147 x - 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $17$ | 17.14.7.2 | $x^{14} - 24137569 x^{2} + 1231016019$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |