Normalized defining polynomial
\( x^{14} - 6 x^{13} + 7 x^{12} + 62 x^{11} - 264 x^{10} - 117 x^{9} + 6405 x^{8} - 5588 x^{7} - 36573 x^{6} + 36976 x^{5} + 251350 x^{4} - 101850 x^{3} - 544712 x^{2} + 132111 x + 1331177 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-54638052730056427270720751=-\,4751^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $4751$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{4}{13} a^{11} + \frac{6}{13} a^{10} - \frac{6}{13} a^{9} - \frac{3}{13} a^{7} + \frac{3}{13} a^{6} + \frac{4}{13} a^{4} - \frac{1}{13} a^{3} - \frac{5}{13} a^{2} + \frac{1}{13} a - \frac{6}{13}$, $\frac{1}{40472903198164590954871501416242297209} a^{13} + \frac{172604963270025043743240108015894499}{40472903198164590954871501416242297209} a^{12} - \frac{14282481520948615823570301624568866785}{40472903198164590954871501416242297209} a^{11} + \frac{19520428534394246459625738372976006925}{40472903198164590954871501416242297209} a^{10} + \frac{18447371001010092232455318627017439051}{40472903198164590954871501416242297209} a^{9} + \frac{12554965988687837951512929227039481182}{40472903198164590954871501416242297209} a^{8} + \frac{8391325745527828359470428408858310063}{40472903198164590954871501416242297209} a^{7} - \frac{18302196225650014936457876009975502001}{40472903198164590954871501416242297209} a^{6} + \frac{10558399041016848760790301929097469145}{40472903198164590954871501416242297209} a^{5} + \frac{989093062192047983143192825191791380}{40472903198164590954871501416242297209} a^{4} + \frac{13624182148920241831508751621348455595}{40472903198164590954871501416242297209} a^{3} + \frac{7569526520469180599264223678694343740}{40472903198164590954871501416242297209} a^{2} - \frac{10330084498830546150148876138466797198}{40472903198164590954871501416242297209} a - \frac{4921146225563117745190923565348412693}{40472903198164590954871501416242297209}$
Class group and class number
$C_{13}$, which has order $13$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 461238.688486 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-4751}) \), 7.1.107239576751.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.107239576751.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 4751 | Data not computed | ||||||