Normalized defining polynomial
\( x^{14} - 7224 x^{11} + 57190 x^{10} - 156520 x^{9} + 13355972 x^{8} - 137092600 x^{7} + 292188225 x^{6} - 6638516472 x^{5} + 89548734100 x^{4} - 104675735920 x^{3} - 330830535168 x^{2} - 18134414520320 x + 89621816934400 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-53588606915566584613059849086223224055607=-\,7^{25}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $811.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1,·)$, $\chi_{2107}(895,·)$, $\chi_{2107}(484,·)$, $\chi_{2107}(2085,·)$, $\chi_{2107}(1994,·)$, $\chi_{2107}(1420,·)$, $\chi_{2107}(365,·)$, $\chi_{2107}(398,·)$, $\chi_{2107}(1779,·)$, $\chi_{2107}(1380,·)$, $\chi_{2107}(90,·)$, $\chi_{2107}(379,·)$, $\chi_{2107}(1245,·)$, $\chi_{2107}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{2752} a^{7} - \frac{1}{32} a^{6} - \frac{1}{32} a^{5} + \frac{7}{64} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{5504} a^{8} - \frac{1}{64} a^{6} + \frac{3}{128} a^{4} - \frac{1}{8} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{11008} a^{9} - \frac{1}{11008} a^{8} - \frac{1}{5504} a^{7} - \frac{3}{128} a^{6} + \frac{11}{256} a^{5} - \frac{3}{256} a^{4} - \frac{7}{32} a^{3} + \frac{3}{64} a^{2} + \frac{3}{16} a$, $\frac{1}{2366720} a^{10} - \frac{1}{11008} a^{8} - \frac{1}{13760} a^{7} + \frac{137}{11008} a^{6} + \frac{81}{1376} a^{5} + \frac{2681}{55040} a^{4} + \frac{335}{2752} a^{3} + \frac{1}{64} a^{2} - \frac{39}{80} a$, $\frac{1}{75735040} a^{11} - \frac{9}{352256} a^{9} - \frac{3}{220160} a^{8} + \frac{17}{352256} a^{7} - \frac{49}{5504} a^{6} - \frac{57519}{1761280} a^{5} + \frac{1221}{44032} a^{4} - \frac{217}{2048} a^{3} - \frac{69}{2560} a^{2} - \frac{11}{32} a$, $\frac{1}{6513213440} a^{12} - \frac{1}{151470080} a^{11} - \frac{13}{151470080} a^{10} + \frac{3831}{151470080} a^{9} - \frac{3}{151470080} a^{8} + \frac{2681}{151470080} a^{7} + \frac{3870961}{151470080} a^{6} + \frac{8493997}{151470080} a^{5} - \frac{54087}{880640} a^{4} - \frac{121621}{880640} a^{3} + \frac{109}{5120} a^{2} + \frac{117}{320} a$, $\frac{1}{261949987878963832879829160936238639022080} a^{13} - \frac{3328910228060789212134503949417}{65487496969740958219957290234059659755520} a^{12} + \frac{849025791270463784360067544873}{1522965045807929260929239307768829296640} a^{11} - \frac{291901134888953990191198371677289}{1522965045807929260929239307768829296640} a^{10} - \frac{90397195616067586772915450596564229}{3045930091615858521858478615537658593280} a^{9} - \frac{134963019592384923087698619404967271}{1522965045807929260929239307768829296640} a^{8} - \frac{24126349799649329445021733185586571}{152296504580792926092923930776882929664} a^{7} - \frac{5679418477129333454254373763781388767}{1522965045807929260929239307768829296640} a^{6} - \frac{91752829017383804983724786641661686929}{6091860183231717043716957231075317186560} a^{5} + \frac{316259402750005982161044521633055773}{17708895881487549545688829160102666240} a^{4} - \frac{2915805643415669272271549988393816287}{35417791762975099091377658320205332480} a^{3} + \frac{14980334612002886002786596005182147}{205917393970785459833591036745379840} a^{2} - \frac{4215300781858069359510814633181377}{12869837123174091239599439796586240} a - \frac{3571579204526600892859222772623}{10054560252479758780937062341083}$
Class group and class number
$C_{7}\times C_{4529959}$, which has order $31709713$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 155488734885.34106 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.87495801462998035849.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $43$ | 43.7.6.3 | $x^{7} - 3483$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.3 | $x^{7} - 3483$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |