Normalized defining polynomial
\( x^{14} - 7224 x^{11} + 301 x^{10} + 783202 x^{9} + 13716269 x^{8} - 107746304 x^{7} - 1425878538 x^{6} + 1870004640 x^{5} + 104029582531 x^{4} + 50016502081 x^{3} - 2822541592794 x^{2} - 10557595949299 x + 79626326570317 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-53588606915566584613059849086223224055607=-\,7^{25}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $811.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1632,·)$, $\chi_{2107}(1,·)$, $\chi_{2107}(1478,·)$, $\chi_{2107}(967,·)$, $\chi_{2107}(680,·)$, $\chi_{2107}(1483,·)$, $\chi_{2107}(1420,·)$, $\chi_{2107}(1294,·)$, $\chi_{2107}(176,·)$, $\chi_{2107}(594,·)$, $\chi_{2107}(1301,·)$, $\chi_{2107}(1847,·)$, $\chi_{2107}(1688,·)$, $\chi_{2107}(188,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{43} a^{7}$, $\frac{1}{43} a^{8}$, $\frac{1}{43} a^{9}$, $\frac{1}{1849} a^{10} + \frac{7}{43} a^{6} - \frac{18}{43} a^{5} + \frac{9}{43} a^{4} + \frac{11}{43} a^{3}$, $\frac{1}{1849} a^{11} - \frac{18}{43} a^{6} + \frac{9}{43} a^{5} + \frac{11}{43} a^{4}$, $\frac{1}{19002173} a^{12} + \frac{45}{441911} a^{11} + \frac{31}{441911} a^{10} - \frac{2232}{441911} a^{9} - \frac{4895}{441911} a^{8} + \frac{3981}{441911} a^{7} - \frac{105900}{441911} a^{6} + \frac{177988}{441911} a^{5} - \frac{59}{239} a^{4} + \frac{3093}{10277} a^{3} - \frac{119}{239} a^{2} - \frac{118}{239} a + \frac{118}{239}$, $\frac{1}{122447462633183472384436203763260563455947228892052622802273} a^{13} + \frac{1998027351896531460304065771767567445056340932611071}{122447462633183472384436203763260563455947228892052622802273} a^{12} + \frac{395051036144341251792703427025042840329836734173349026}{2847615410074034241498516366587454964091796020745409832611} a^{11} + \frac{514246311351385373205677864945924291827273679036342712}{2847615410074034241498516366587454964091796020745409832611} a^{10} + \frac{13335624881466572667348536122945902108296025828175656793}{2847615410074034241498516366587454964091796020745409832611} a^{9} + \frac{11678865475378572999694970319048216334133475610240918543}{2847615410074034241498516366587454964091796020745409832611} a^{8} - \frac{15958071940366991197845563962931022930992737682618574397}{2847615410074034241498516366587454964091796020745409832611} a^{7} + \frac{124734972755732238131027501271785187197567869963735876663}{2847615410074034241498516366587454964091796020745409832611} a^{6} + \frac{1094201749622251528004226938862068990179689811370225197073}{2847615410074034241498516366587454964091796020745409832611} a^{5} + \frac{716245376586858710816014247674790368284188247208490046}{66223614187768238174384101548545464281204558621986275177} a^{4} - \frac{24376314462334228685412853861354262954064892013978711021}{66223614187768238174384101548545464281204558621986275177} a^{3} + \frac{602565805494458841893457134398072561893612999650242253}{1540084050878331120334513989501057308865222293534564539} a^{2} - \frac{330502379419609398252818840444261020550193143340615786}{1540084050878331120334513989501057308865222293534564539} a - \frac{288947101058505823694912338326489329606519641570223322}{1540084050878331120334513989501057308865222293534564539}$
Class group and class number
$C_{7}\times C_{7}\times C_{16177}$, which has order $792673$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 224277011.0596314 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.87495801462998035849.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $43$ | 43.7.6.2 | $x^{7} + 387$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.2 | $x^{7} + 387$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |