Normalized defining polynomial
\( x^{14} - 7224 x^{11} - 50267 x^{10} - 556850 x^{9} + 13779479 x^{8} + 215168302 x^{7} + 3646509048 x^{6} + 29686323660 x^{5} + 262979976931 x^{4} + 1267459647895 x^{3} + 7166415442578 x^{2} + 17279409997031 x + 62055692847703 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-53588606915566584613059849086223224055607=-\,7^{25}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $811.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(64,·)$, $\chi_{2107}(1,·)$, $\chi_{2107}(1282,·)$, $\chi_{2107}(1989,·)$, $\chi_{2107}(1000,·)$, $\chi_{2107}(1420,·)$, $\chi_{2107}(428,·)$, $\chi_{2107}(876,·)$, $\chi_{2107}(944,·)$, $\chi_{2107}(2099,·)$, $\chi_{2107}(790,·)$, $\chi_{2107}(279,·)$, $\chi_{2107}(1595,·)$, $\chi_{2107}(1982,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{43} a^{7}$, $\frac{1}{43} a^{8}$, $\frac{1}{43} a^{9}$, $\frac{1}{1849} a^{10} - \frac{8}{43} a^{6} - \frac{7}{43} a^{5} + \frac{17}{43} a^{4} + \frac{4}{43} a^{3}$, $\frac{1}{1849} a^{11} - \frac{7}{43} a^{6} + \frac{17}{43} a^{5} + \frac{4}{43} a^{4}$, $\frac{1}{2305703} a^{12} + \frac{10}{53621} a^{11} + \frac{4}{53621} a^{10} - \frac{168}{53621} a^{9} - \frac{524}{53621} a^{8} + \frac{122}{53621} a^{7} + \frac{9133}{53621} a^{6} + \frac{14022}{53621} a^{5} + \frac{194}{1247} a^{4} + \frac{403}{1247} a^{3} - \frac{14}{29} a^{2} + \frac{6}{29} a$, $\frac{1}{256189314510912092928476801717033814137138204568383205197359} a^{13} - \frac{43945392586784993576189818276698039760473642609501222}{256189314510912092928476801717033814137138204568383205197359} a^{12} + \frac{1181191593691300873123765857778291171088226249014456968}{5957891035137490533220390737605437538072981501590307097613} a^{11} + \frac{1512247964026348674115908715777891318460070096772374855}{5957891035137490533220390737605437538072981501590307097613} a^{10} - \frac{43199388984974467287925414391796108171413827543181901522}{5957891035137490533220390737605437538072981501590307097613} a^{9} + \frac{62070310174906807254600485894549172909488774642002893879}{5957891035137490533220390737605437538072981501590307097613} a^{8} + \frac{17954204613947564913914779392286805650604593173110776313}{5957891035137490533220390737605437538072981501590307097613} a^{7} - \frac{2656140983031982903889778457828233895303435372391822136538}{5957891035137490533220390737605437538072981501590307097613} a^{6} + \frac{916372129775773954126756298124928073078024597557570044673}{5957891035137490533220390737605437538072981501590307097613} a^{5} - \frac{31496826915223757880902708060950514270465208491363295443}{138555605468313733330706761339661338094720500036983885991} a^{4} - \frac{6078208027149069965258698805161837088753936023208686806}{138555605468313733330706761339661338094720500036983885991} a^{3} - \frac{1346055263265016303907887905989848323500417730914685605}{3222223382984040310016436310224682281272569768301950837} a^{2} + \frac{260364352291118843415990312919556124753497908922656974}{3222223382984040310016436310224682281272569768301950837} a - \frac{470821847730536424490168426248162930868218345950732}{983284523339652215445967748008752603378873899390281}$
Class group and class number
$C_{7}\times C_{134659}$, which has order $942613$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 534504501.8334233 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.87495801462998035849.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $43$ | 43.7.6.7 | $x^{7} - 22851963$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.7 | $x^{7} - 22851963$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |