Normalized defining polynomial
\( x^{14} - 7224 x^{11} - 20769 x^{10} - 413574 x^{9} + 16012899 x^{8} + 117159090 x^{7} + 2010254988 x^{6} + 6124265196 x^{5} + 69559163667 x^{4} + 98387288769 x^{3} + 886043817568 x^{2} + 4291822604559 x + 22085122836303 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-53588606915566584613059849086223224055607=-\,7^{25}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $811.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1,·)$, $\chi_{2107}(1896,·)$, $\chi_{2107}(41,·)$, $\chi_{2107}(1420,·)$, $\chi_{2107}(1392,·)$, $\chi_{2107}(1681,·)$, $\chi_{2107}(274,·)$, $\chi_{2107}(1331,·)$, $\chi_{2107}(1268,·)$, $\chi_{2107}(183,·)$, $\chi_{2107}(1497,·)$, $\chi_{2107}(699,·)$, $\chi_{2107}(1884,·)$, $\chi_{2107}(1182,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{129} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{129} a^{8} + \frac{1}{3} a^{4}$, $\frac{1}{129} a^{9} - \frac{1}{3} a$, $\frac{1}{16641} a^{10} - \frac{10}{387} a^{6} + \frac{19}{129} a^{5} + \frac{11}{43} a^{4} - \frac{12}{43} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{16641} a^{11} - \frac{1}{387} a^{7} + \frac{19}{129} a^{6} - \frac{10}{129} a^{5} - \frac{12}{43} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{715563} a^{12} - \frac{13}{5547} a^{9} - \frac{10}{16641} a^{8} + \frac{19}{5547} a^{7} + \frac{248}{5547} a^{6} + \frac{117}{1849} a^{5} + \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{330996212258482438141938543794913415002563931685107455145543} a^{13} + \frac{46300904034821194572346226195989306376046578640258125}{330996212258482438141938543794913415002563931685107455145543} a^{12} + \frac{208937566680568923029496783051632233610255667595677653}{7697586331592614840510198692904963139594510039188545468501} a^{11} + \frac{38352101918777248331202672660374117135214316184603648}{7697586331592614840510198692904963139594510039188545468501} a^{10} - \frac{5333446543730042238308732155141155599687654755074059929}{7697586331592614840510198692904963139594510039188545468501} a^{9} - \frac{3083927383212619782633766828140062936168570403759316553}{7697586331592614840510198692904963139594510039188545468501} a^{8} - \frac{16658628928087549128412771099086333793977952818228149222}{7697586331592614840510198692904963139594510039188545468501} a^{7} + \frac{1261380959973812296215968036832630172929156585216273822616}{7697586331592614840510198692904963139594510039188545468501} a^{6} - \frac{77952378233694170465790633449663682954048285466616715794}{7697586331592614840510198692904963139594510039188545468501} a^{5} + \frac{54799827096443486060410560156038909165945562385270190099}{179013635618432903267679039369882863711500233469501057407} a^{4} + \frac{85905262865773354538845168714169483132695219220464437056}{179013635618432903267679039369882863711500233469501057407} a^{3} - \frac{906975328593478848542156113503780270570812357705868082}{4163107805079834959713466031857741016546517057430257149} a^{2} - \frac{207204547459178350068384023707631724746597238324796093}{462567533897759439968162892428637890727390784158917461} a - \frac{184308807336419397864991424804828109233780788005295975}{462567533897759439968162892428637890727390784158917461}$
Class group and class number
$C_{7}\times C_{15491}$, which has order $108437$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5135341547.611097 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.87495801462998035849.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $43$ | 43.7.6.5 | $x^{7} - 282123$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.5 | $x^{7} - 282123$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |