Normalized defining polynomial
\( x^{14} - 7224 x^{11} + 25585 x^{10} + 176386 x^{9} + 16307879 x^{8} - 95951318 x^{7} - 935002320 x^{6} + 1542753828 x^{5} + 7724343571 x^{4} + 49362000457 x^{3} + 1628162950638 x^{2} - 164577661339 x + 16680217258567 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-53588606915566584613059849086223224055607=-\,7^{25}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $811.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1,·)$, $\chi_{2107}(1091,·)$, $\chi_{2107}(1798,·)$, $\chi_{2107}(778,·)$, $\chi_{2107}(1420,·)$, $\chi_{2107}(1933,·)$, $\chi_{2107}(1583,·)$, $\chi_{2107}(692,·)$, $\chi_{2107}(1784,·)$, $\chi_{2107}(666,·)$, $\chi_{2107}(1903,·)$, $\chi_{2107}(1546,·)$, $\chi_{2107}(1086,·)$, $\chi_{2107}(575,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{43} a^{7}$, $\frac{1}{43} a^{8}$, $\frac{1}{43} a^{9}$, $\frac{1}{42527} a^{10} - \frac{10}{989} a^{9} + \frac{3}{989} a^{8} - \frac{4}{989} a^{7} - \frac{136}{989} a^{6} - \frac{413}{989} a^{5} + \frac{380}{989} a^{4} - \frac{285}{989} a^{3} - \frac{2}{23} a^{2} - \frac{3}{23} a$, $\frac{1}{42527} a^{11} + \frac{4}{989} a^{9} - \frac{2}{989} a^{8} + \frac{7}{989} a^{7} + \frac{447}{989} a^{6} - \frac{179}{989} a^{5} - \frac{70}{989} a^{4} + \frac{11}{23} a^{2} - \frac{2}{23} a$, $\frac{1}{1828661} a^{12} - \frac{168}{42527} a^{9} - \frac{394}{42527} a^{8} + \frac{146}{42527} a^{7} - \frac{3490}{42527} a^{6} - \frac{20022}{42527} a^{5} - \frac{7}{23} a^{4} - \frac{8}{23} a^{3} + \frac{1}{23} a^{2} - \frac{11}{23} a$, $\frac{1}{114969514977201829529130453418861331144279640157034257016243} a^{13} + \frac{231522127948783737642192339315147767059374447389904}{4998674564226166501266541452993970919316506093784098131141} a^{12} - \frac{210888548447487536505083721586473606207752013553434}{116248245679678290727128870999859788821314095204281351887} a^{11} + \frac{297033220754843938425268303698713552426475682837653}{62179294200758155505208465883645933555586609062755141707} a^{10} - \frac{28894368985814657188805421644001057413482977806699661600}{2673709650632600686723964032996775142890224189698471093401} a^{9} + \frac{5809682819791558182928101785892209296739306621514801705}{2673709650632600686723964032996775142890224189698471093401} a^{8} + \frac{4050599085331539241339920371435539550120492258891805937}{2673709650632600686723964032996775142890224189698471093401} a^{7} + \frac{15697312766723416546501446419740839581815745052572880946}{2673709650632600686723964032996775142890224189698471093401} a^{6} - \frac{719183389511256603709389639836135411688189411095352927250}{2673709650632600686723964032996775142890224189698471093401} a^{5} - \frac{16385358927454123343230602903231734780784953657250976610}{62179294200758155505208465883645933555586609062755141707} a^{4} + \frac{23198693446777514611949017836630151122842562079236581220}{62179294200758155505208465883645933555586609062755141707} a^{3} - \frac{510003929489493714406897392968580294194401036732282384}{1446030097692050128028103857759207757106665327040817249} a^{2} + \frac{11590636739268621423810401414578004433009397864343555}{62870873812697831653395819902574250308985449001774663} a - \frac{1114395958041538721855037474401560031422995698222993}{2733516252725992680582426952285836969955889087033681}$
Class group and class number
$C_{7}\times C_{172781}$, which has order $1209467$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 301031344.50909585 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.87495801462998035849.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $43$ | 43.7.6.6 | $x^{7} + 2539107$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.6 | $x^{7} + 2539107$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |