Normalized defining polynomial
\( x^{14} - 7224 x^{11} + 301 x^{10} - 68026 x^{9} + 13842689 x^{8} + 7961708 x^{7} + 210375522 x^{6} + 2524506264 x^{5} - 3402184037 x^{4} + 94982321987 x^{3} + 2062378028046 x^{2} - 2009656697825 x + 657479876713 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-53588606915566584613059849086223224055607=-\,7^{25}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $811.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(2080,·)$, $\chi_{2107}(1,·)$, $\chi_{2107}(1602,·)$, $\chi_{2107}(643,·)$, $\chi_{2107}(580,·)$, $\chi_{2107}(993,·)$, $\chi_{2107}(1420,·)$, $\chi_{2107}(1387,·)$, $\chi_{2107}(1196,·)$, $\chi_{2107}(78,·)$, $\chi_{2107}(1693,·)$, $\chi_{2107}(1870,·)$, $\chi_{2107}(729,·)$, $\chi_{2107}(477,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{473} a^{7} - \frac{2}{11} a^{6} + \frac{5}{11} a^{5} - \frac{4}{11} a^{3} - \frac{4}{11} a^{2} + \frac{5}{11} a$, $\frac{1}{473} a^{8} - \frac{2}{11} a^{6} + \frac{1}{11} a^{5} - \frac{4}{11} a^{4} + \frac{4}{11} a^{3} + \frac{2}{11} a^{2} + \frac{1}{11} a$, $\frac{1}{473} a^{9} + \frac{5}{11} a^{6} - \frac{3}{11} a^{5} + \frac{4}{11} a^{4} - \frac{1}{11} a^{3} - \frac{2}{11} a^{2} + \frac{1}{11} a$, $\frac{1}{20339} a^{10} - \frac{79}{473} a^{6} + \frac{95}{473} a^{5} + \frac{197}{473} a^{4} - \frac{8}{43} a^{3} - \frac{3}{11} a^{2} - \frac{3}{11} a$, $\frac{1}{223729} a^{11} - \frac{1}{223729} a^{10} - \frac{4}{5203} a^{9} + \frac{1}{5203} a^{8} - \frac{3}{5203} a^{7} - \frac{1159}{5203} a^{6} - \frac{1919}{5203} a^{5} - \frac{2564}{5203} a^{4} + \frac{1421}{5203} a^{3} + \frac{58}{121} a^{2} - \frac{5}{121} a - \frac{5}{11}$, $\frac{1}{1806082376260613} a^{12} - \frac{21101230}{42001915726991} a^{11} - \frac{918351969}{42001915726991} a^{10} - \frac{27638281988}{42001915726991} a^{9} + \frac{41877101447}{42001915726991} a^{8} - \frac{19987628458}{42001915726991} a^{7} + \frac{16146678880240}{42001915726991} a^{6} + \frac{19248851481709}{42001915726991} a^{5} - \frac{277230530813}{976788737837} a^{4} + \frac{46583842270}{976788737837} a^{3} + \frac{3978149849}{22716017159} a^{2} - \frac{6077006808}{22716017159} a + \frac{956183928}{2065092469}$, $\frac{1}{2231414553123600784114463154181944338908157893813} a^{13} - \frac{256717207605972593482653999408228}{2231414553123600784114463154181944338908157893813} a^{12} - \frac{1987478867681746312282988523839621040834}{4717578336413532313138399903133074712279403581} a^{11} + \frac{321529200621238812829691794115609298077643}{51893361700548855444522398934463821835073439391} a^{10} - \frac{14096623143060132105026202318704415820165475}{51893361700548855444522398934463821835073439391} a^{9} - \frac{2629861221763815394180044745445456956258426}{51893361700548855444522398934463821835073439391} a^{8} + \frac{44327002606147278395239602082085930985813398}{51893361700548855444522398934463821835073439391} a^{7} - \frac{2158889065658815009988555804605325987901605758}{4717578336413532313138399903133074712279403581} a^{6} + \frac{22776417349377409472109400583183873763659608101}{51893361700548855444522398934463821835073439391} a^{5} - \frac{312624908376258483089323796366012786996896372}{1206822365129043149872613928708460972908684637} a^{4} + \frac{593358715335086696668042584242168392847162734}{1206822365129043149872613928708460972908684637} a^{3} + \frac{3662723082491179758188135603387078911786399}{28065636398349840694711951830429324951364759} a^{2} + \frac{9138040594884052130290692058539552991265031}{28065636398349840694711951830429324951364759} a - \frac{184830034759917120189410121342376130124132}{2551421490759076426791995620948120450124069}$
Class group and class number
$C_{2}\times C_{14}\times C_{42742}$, which has order $1196776$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 769768169.7365845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.87495801462998035849.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $43$ | 43.7.6.4 | $x^{7} + 31347$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.4 | $x^{7} + 31347$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |