Normalized defining polynomial
\( x^{14} - x^{13} + 121 x^{12} - 1302 x^{11} + 15895 x^{10} - 88844 x^{9} + 415211 x^{8} - 1029384 x^{7} + 2348246 x^{6} - 2578842 x^{5} + 5826655 x^{4} - 5062204 x^{3} + 8867677 x^{2} + 982009 x + 117649 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-530059499186032039461665494643307=-\,3^{7}\cdot 281^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $217.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 281$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(843=3\cdot 281\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{843}(1,·)$, $\chi_{843}(743,·)$, $\chi_{843}(811,·)$, $\chi_{843}(109,·)$, $\chi_{843}(79,·)$, $\chi_{843}(530,·)$, $\chi_{843}(563,·)$, $\chi_{843}(340,·)$, $\chi_{843}(181,·)$, $\chi_{843}(727,·)$, $\chi_{843}(641,·)$, $\chi_{843}(59,·)$, $\chi_{843}(446,·)$, $\chi_{843}(671,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} + \frac{1}{49} a^{10} - \frac{3}{49} a^{9} + \frac{1}{49} a^{8} + \frac{3}{7} a^{6} - \frac{22}{49} a^{5} + \frac{13}{49} a^{4} + \frac{24}{49} a^{3} - \frac{8}{49} a^{2} + \frac{3}{7} a$, $\frac{1}{1692335981} a^{12} - \frac{6250557}{1692335981} a^{11} + \frac{107378374}{1692335981} a^{10} - \frac{66958369}{1692335981} a^{9} + \frac{81175837}{1692335981} a^{8} - \frac{7225361}{241762283} a^{7} - \frac{105683789}{1692335981} a^{6} - \frac{757679736}{1692335981} a^{5} + \frac{233453999}{1692335981} a^{4} + \frac{661028552}{1692335981} a^{3} + \frac{123869234}{1692335981} a^{2} + \frac{40332231}{241762283} a - \frac{3661122}{34537469}$, $\frac{1}{10696373907890656960189388119619393} a^{13} - \frac{1122689301785156274398972}{10696373907890656960189388119619393} a^{12} - \frac{88882195761083722971882880155105}{10696373907890656960189388119619393} a^{11} - \frac{80427650743325635197390001969753}{1528053415412950994312769731374199} a^{10} - \frac{289585905880589755845682400487909}{10696373907890656960189388119619393} a^{9} - \frac{75626237300524363677132025337690}{1528053415412950994312769731374199} a^{8} - \frac{224270952771949713814109475082079}{10696373907890656960189388119619393} a^{7} - \frac{2297584783097220658699639689163063}{10696373907890656960189388119619393} a^{6} + \frac{830769431512096291648946679349643}{10696373907890656960189388119619393} a^{5} - \frac{254584793956414862668856819019129}{1528053415412950994312769731374199} a^{4} - \frac{947901203666460279041275310830484}{10696373907890656960189388119619393} a^{3} - \frac{316230364385492218243023355429959}{1528053415412950994312769731374199} a^{2} - \frac{107281682745690520232846167190590}{218293345058992999187538533053457} a - \frac{27823376680720127383365248507}{4454966225693734677296704756193}$
Class group and class number
$C_{50723}$, which has order $50723$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{41047875211280137134414}{43048781982165552358985105383} a^{13} - \frac{42800265099002327660706}{43048781982165552358985105383} a^{12} + \frac{4962264652431790677020538}{43048781982165552358985105383} a^{11} - \frac{7665057289429301563615613}{6149825997452221765569300769} a^{10} + \frac{653989859515508178119719121}{43048781982165552358985105383} a^{9} - \frac{523886131819688898997162577}{6149825997452221765569300769} a^{8} + \frac{17107110675144800963289790198}{43048781982165552358985105383} a^{7} - \frac{42519357059736019353796126791}{43048781982165552358985105383} a^{6} + \frac{96187269316525565567228976758}{43048781982165552358985105383} a^{5} - \frac{15225125216741658898937526134}{6149825997452221765569300769} a^{4} + \frac{238224539504723863706578460813}{43048781982165552358985105383} a^{3} - \frac{32202313339926738877606822393}{6149825997452221765569300769} a^{2} + \frac{7354632194762661199377762007}{878546571064603109367042967} a + \frac{16620564088037966768368123}{17929521858461287946266183} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12176100.831221418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.492309163417681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 281 | Data not computed | ||||||