Normalized defining polynomial
\( x^{14} - 7 x^{13} + 35 x^{12} - 77 x^{11} + 616 x^{10} - 3514 x^{9} + 22610 x^{8} - 87041 x^{7} + 393736 x^{6} - 1269674 x^{5} + 4382567 x^{4} - 9954511 x^{3} + 25812486 x^{2} - 38466645 x + 67802507 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5270900489883727544021626212511=-\,7^{24}\cdot 31^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1519=7^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1519}(960,·)$, $\chi_{1519}(1,·)$, $\chi_{1519}(869,·)$, $\chi_{1519}(743,·)$, $\chi_{1519}(652,·)$, $\chi_{1519}(526,·)$, $\chi_{1519}(1394,·)$, $\chi_{1519}(435,·)$, $\chi_{1519}(309,·)$, $\chi_{1519}(1303,·)$, $\chi_{1519}(1177,·)$, $\chi_{1519}(218,·)$, $\chi_{1519}(92,·)$, $\chi_{1519}(1086,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} - \frac{9}{19} a^{8} + \frac{3}{19} a^{7} + \frac{3}{19} a^{6} + \frac{6}{19} a^{5} - \frac{7}{19} a^{4} - \frac{2}{19} a^{3} - \frac{3}{19} a^{2} - \frac{1}{19} a$, $\frac{1}{19} a^{10} - \frac{2}{19} a^{8} - \frac{8}{19} a^{7} - \frac{5}{19} a^{6} + \frac{9}{19} a^{5} - \frac{8}{19} a^{4} - \frac{2}{19} a^{3} - \frac{9}{19} a^{2} - \frac{9}{19} a$, $\frac{1}{19} a^{11} - \frac{7}{19} a^{8} + \frac{1}{19} a^{7} - \frac{4}{19} a^{6} + \frac{4}{19} a^{5} + \frac{3}{19} a^{4} + \frac{6}{19} a^{3} + \frac{4}{19} a^{2} - \frac{2}{19} a$, $\frac{1}{589} a^{12} + \frac{12}{589} a^{11} + \frac{10}{589} a^{10} - \frac{9}{589} a^{9} - \frac{256}{589} a^{8} - \frac{211}{589} a^{7} - \frac{176}{589} a^{6} + \frac{167}{589} a^{5} + \frac{90}{589} a^{4} + \frac{5}{19} a^{3} + \frac{1}{31} a^{2} - \frac{112}{589} a + \frac{10}{31}$, $\frac{1}{1631019238755153731869657927301081} a^{13} - \frac{275417161507632211953481821251}{1631019238755153731869657927301081} a^{12} + \frac{17441373656376964646352139505462}{1631019238755153731869657927301081} a^{11} + \frac{19228647289255019987793742976193}{1631019238755153731869657927301081} a^{10} - \frac{692047693375846446405156646171}{52613523830811410705472836364551} a^{9} + \frac{159591651936346838056375987213686}{1631019238755153731869657927301081} a^{8} - \frac{83096253577334588408529347755886}{1631019238755153731869657927301081} a^{7} - \frac{531425616888508727358853776697823}{1631019238755153731869657927301081} a^{6} - \frac{410927761919185472302959502290054}{1631019238755153731869657927301081} a^{5} + \frac{241657603645035591465807415050922}{1631019238755153731869657927301081} a^{4} - \frac{739531751874462175109273456113391}{1631019238755153731869657927301081} a^{3} + \frac{155786329538505588630464580041994}{1631019238755153731869657927301081} a^{2} + \frac{268216981687743364560228457111643}{1631019238755153731869657927301081} a + \frac{1884467459518167961316479764371}{85843117829218617466824101436899}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{5334}$, which has order $170688$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ | |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |