Normalized defining polynomial
\( x^{14} - 6 x^{13} + 47 x^{12} - 96 x^{11} + 817 x^{10} - 1614 x^{9} + 15353 x^{8} - 11976 x^{7} + 129647 x^{6} + 14466 x^{5} + 2094349 x^{4} - 5253552 x^{3} + 26472884 x^{2} - 34197120 x + 63264400 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5227532131604246464597421875=-\,5^{7}\cdot 1823^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 1823$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{6} - \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{3}{10} a^{3} + \frac{1}{10} a^{2} + \frac{2}{5} a$, $\frac{1}{20} a^{7} - \frac{1}{20} a^{6} - \frac{3}{20} a^{5} + \frac{3}{20} a^{4} + \frac{1}{20} a^{3} - \frac{1}{20} a^{2}$, $\frac{1}{60} a^{8} + \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{9}{20} a^{2} - \frac{2}{5} a + \frac{1}{3}$, $\frac{1}{120} a^{9} - \frac{1}{40} a^{7} - \frac{1}{40} a^{6} + \frac{1}{40} a^{5} + \frac{3}{40} a^{4} - \frac{1}{20} a^{3} + \frac{19}{40} a^{2} - \frac{29}{60} a - \frac{1}{2}$, $\frac{1}{120} a^{10} - \frac{1}{120} a^{8} - \frac{1}{40} a^{7} + \frac{1}{40} a^{6} + \frac{7}{40} a^{5} + \frac{3}{20} a^{4} - \frac{13}{40} a^{3} + \frac{1}{15} a^{2} + \frac{1}{10} a + \frac{1}{3}$, $\frac{1}{23400} a^{11} - \frac{49}{23400} a^{10} + \frac{11}{7800} a^{9} + \frac{43}{11700} a^{8} - \frac{17}{3900} a^{7} + \frac{187}{3900} a^{6} + \frac{487}{7800} a^{5} + \frac{233}{1560} a^{4} + \frac{1849}{4680} a^{3} + \frac{577}{5850} a^{2} + \frac{7}{39} a - \frac{4}{117}$, $\frac{1}{6715800} a^{12} - \frac{1}{129150} a^{11} + \frac{71}{223860} a^{10} + \frac{1529}{516600} a^{9} + \frac{1327}{223860} a^{8} - \frac{22577}{1119300} a^{7} + \frac{2333}{63960} a^{6} - \frac{105643}{1119300} a^{5} - \frac{29663}{335790} a^{4} - \frac{34787}{6715800} a^{3} - \frac{45337}{559650} a^{2} - \frac{33563}{167895} a - \frac{2791}{11193}$, $\frac{1}{4693059175886148702726000} a^{13} + \frac{340643451203717}{27934876046941361325750} a^{12} + \frac{2321593676554643389}{223479008375530890606000} a^{11} + \frac{742423682342083486397}{180502275995621103951000} a^{10} + \frac{1274698604796986816567}{361004551991242207902000} a^{9} - \frac{7876218032225047632821}{2346529587943074351363000} a^{8} + \frac{21580511059894016743613}{1564353058628716234242000} a^{7} + \frac{14049717402599912516851}{391088264657179058560500} a^{6} - \frac{496018662437769194763829}{4693059175886148702726000} a^{5} + \frac{74860521621400609505543}{782176529314358117121000} a^{4} - \frac{1359637635918468311417}{7630990529896176752400} a^{3} + \frac{60664139164944404151019}{2346529587943074351363000} a^{2} + \frac{104142609326666056317593}{234652958794307435136300} a + \frac{1725526993123950012187}{11732647939715371756815}$
Class group and class number
$C_{29}\times C_{58}$, which has order $1682$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2195415.12282 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-9115}) \), 7.1.757303595875.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.757303595875.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 1823 | Data not computed | ||||||