Normalized defining polynomial
\( x^{14} - 7 x^{13} + 56 x^{12} - 203 x^{11} + 1624 x^{10} - 7273 x^{9} + 50645 x^{8} - 197585 x^{7} + 1046059 x^{6} - 3388448 x^{5} + 13681430 x^{4} - 32204158 x^{3} + 98359275 x^{2} - 143330628 x + 304880351 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-52075344228034366913450823351907=-\,7^{24}\cdot 43^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $184.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1,·)$, $\chi_{2107}(386,·)$, $\chi_{2107}(1891,·)$, $\chi_{2107}(904,·)$, $\chi_{2107}(1289,·)$, $\chi_{2107}(1506,·)$, $\chi_{2107}(302,·)$, $\chi_{2107}(1807,·)$, $\chi_{2107}(85,·)$, $\chi_{2107}(1590,·)$, $\chi_{2107}(603,·)$, $\chi_{2107}(988,·)$, $\chi_{2107}(687,·)$, $\chi_{2107}(1205,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{31} a^{11} + \frac{15}{31} a^{10} + \frac{11}{31} a^{9} - \frac{13}{31} a^{8} - \frac{9}{31} a^{7} - \frac{7}{31} a^{6} - \frac{14}{31} a^{5} + \frac{2}{31} a^{4} + \frac{6}{31} a^{3} + \frac{14}{31} a^{2} + \frac{11}{31} a + \frac{9}{31}$, $\frac{1}{589} a^{12} - \frac{9}{589} a^{11} - \frac{256}{589} a^{10} - \frac{122}{589} a^{9} - \frac{7}{589} a^{8} - \frac{287}{589} a^{7} - \frac{32}{589} a^{6} + \frac{245}{589} a^{5} - \frac{290}{589} a^{4} - \frac{192}{589} a^{3} - \frac{108}{589} a^{2} + \frac{179}{589} a - \frac{154}{589}$, $\frac{1}{74769322456297736075668933789987864577} a^{13} - \frac{50349819085987298682506938470773329}{74769322456297736075668933789987864577} a^{12} - \frac{1111083883687618891135329461463833746}{74769322456297736075668933789987864577} a^{11} - \frac{231312925037604550912947802234688807}{3935227497699880846087838620525677083} a^{10} + \frac{267024112035871324828196874880716510}{2411913627622507615344159154515737567} a^{9} + \frac{188707368621251907168628995555081}{1606871170967693281375189310137067} a^{8} + \frac{16516790727347308833137318214540671997}{74769322456297736075668933789987864577} a^{7} - \frac{2274761854884803989562055060084674382}{74769322456297736075668933789987864577} a^{6} - \frac{26032867730010199422043305956759304472}{74769322456297736075668933789987864577} a^{5} + \frac{2893153681782374737106929198950239340}{74769322456297736075668933789987864577} a^{4} + \frac{10842629390083101141815546618177175747}{74769322456297736075668933789987864577} a^{3} + \frac{19933416525794130810293395501994639152}{74769322456297736075668933789987864577} a^{2} + \frac{18985574346243402211001606727997279611}{74769322456297736075668933789987864577} a + \frac{237660276528324697711491593216428737}{1115960036661160239935357220746087531}$
Class group and class number
$C_{297431}$, which has order $297431$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $43$ | 43.14.7.2 | $x^{14} - 12642726098 x^{2} + 2446367499963$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |