Normalized defining polynomial
\( x^{14} - 2 x^{13} + 46 x^{11} + 165 x^{10} - 1044 x^{9} + 6239 x^{8} - 16892 x^{7} + 74769 x^{6} - 198708 x^{5} + 622438 x^{4} - 1134722 x^{3} + 2734542 x^{2} - 3553304 x + 5334581 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-51148327420496097793280000000=-\,2^{14}\cdot 5^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(860=2^{2}\cdot 5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{860}(1,·)$, $\chi_{860}(259,·)$, $\chi_{860}(379,·)$, $\chi_{860}(41,·)$, $\chi_{860}(821,·)$, $\chi_{860}(299,·)$, $\chi_{860}(59,·)$, $\chi_{860}(121,·)$, $\chi_{860}(661,·)$, $\chi_{860}(219,·)$, $\chi_{860}(279,·)$, $\chi_{860}(441,·)$, $\chi_{860}(699,·)$, $\chi_{860}(21,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{49} a^{10} + \frac{3}{49} a^{9} - \frac{3}{49} a^{8} + \frac{2}{49} a^{7} + \frac{1}{49} a^{6} - \frac{15}{49} a^{5} - \frac{1}{7} a^{4} - \frac{4}{49} a^{3} + \frac{18}{49} a^{2} + \frac{4}{49} a$, $\frac{1}{49} a^{11} + \frac{2}{49} a^{9} - \frac{3}{49} a^{8} + \frac{2}{49} a^{7} + \frac{3}{49} a^{6} + \frac{17}{49} a^{5} - \frac{11}{49} a^{4} - \frac{5}{49} a^{3} - \frac{15}{49} a^{2} + \frac{9}{49} a$, $\frac{1}{49} a^{12} - \frac{2}{49} a^{9} + \frac{1}{49} a^{8} - \frac{1}{49} a^{7} + \frac{1}{49} a^{6} - \frac{16}{49} a^{5} - \frac{5}{49} a^{4} + \frac{15}{49} a^{2} + \frac{6}{49} a$, $\frac{1}{81567810384982339209450421} a^{13} + \frac{93501824685520881801865}{81567810384982339209450421} a^{12} + \frac{485293709601152750181054}{81567810384982339209450421} a^{11} + \frac{285612037468819396659015}{81567810384982339209450421} a^{10} + \frac{4449934284927841554512536}{81567810384982339209450421} a^{9} - \frac{408672279317082284605267}{81567810384982339209450421} a^{8} + \frac{1867553325642150534251347}{81567810384982339209450421} a^{7} - \frac{13348997248882375180035}{81567810384982339209450421} a^{6} + \frac{11176227622766563783610332}{81567810384982339209450421} a^{5} - \frac{35131871766614003847897252}{81567810384982339209450421} a^{4} - \frac{23052810882847578160009616}{81567810384982339209450421} a^{3} + \frac{36849764787236703828604716}{81567810384982339209450421} a^{2} + \frac{3750865231955796593712054}{81567810384982339209450421} a - \frac{168660016181271957958662}{1664649191530251820601029}$
Class group and class number
$C_{28826}$, which has order $28826$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |