Normalized defining polynomial
\( x^{14} - 4 x^{13} - 6 x^{12} - 21 x^{11} + 369 x^{10} + 595 x^{9} - 3663 x^{8} - 18667 x^{7} + 48948 x^{6} + 192779 x^{5} - 167580 x^{4} - 1255412 x^{3} + 794668 x^{2} + 5433177 x + 3910177 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-49098849571309452996402359=-\,4679^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $4679$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{103} a^{12} + \frac{24}{103} a^{11} - \frac{45}{103} a^{10} - \frac{11}{103} a^{9} + \frac{23}{103} a^{8} - \frac{4}{103} a^{7} - \frac{43}{103} a^{6} - \frac{32}{103} a^{5} + \frac{36}{103} a^{4} + \frac{33}{103} a^{3} + \frac{49}{103} a^{2} + \frac{6}{103} a - \frac{40}{103}$, $\frac{1}{33284030892872082119360274959862658697} a^{13} - \frac{58397750651197915763298132705683651}{33284030892872082119360274959862658697} a^{12} + \frac{13473356352461330518564256007515549742}{33284030892872082119360274959862658697} a^{11} + \frac{4563708843054927852895782242253749926}{33284030892872082119360274959862658697} a^{10} - \frac{23662602773202354586921033986024559}{117611416582586862612580476889974059} a^{9} + \frac{14045299528090638760592905875567217285}{33284030892872082119360274959862658697} a^{8} + \frac{14229687820876901703248160681927143202}{33284030892872082119360274959862658697} a^{7} + \frac{1476541288292584257306231052545499404}{33284030892872082119360274959862658697} a^{6} + \frac{10051781690600625441722610956119095489}{33284030892872082119360274959862658697} a^{5} + \frac{10174869475210629153450015398643404072}{33284030892872082119360274959862658697} a^{4} - \frac{257440289026261902187819846224107609}{774047230066792607426983138601457179} a^{3} + \frac{3131217946067722498326478681983766558}{33284030892872082119360274959862658697} a^{2} + \frac{9349678529591261769460262317597533943}{33284030892872082119360274959862658697} a + \frac{10263680093571381127269696022857314513}{33284030892872082119360274959862658697}$
Class group and class number
$C_{13}$, which has order $13$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 419390.665529 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-4679}) \), 7.1.102437538839.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.102437538839.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 4679 | Data not computed | ||||||