Normalized defining polynomial
\( x^{14} - 4 x^{13} + 10 x^{12} - 12 x^{11} - 72 x^{10} + 40 x^{9} + 470 x^{8} + 148 x^{7} - 877 x^{6} - 1148 x^{5} + 280 x^{4} + 1264 x^{3} + 1756 x^{2} + 880 x + 400 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48859625810781274112=-\,2^{21}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{40} a^{8} + \frac{1}{10} a^{6} - \frac{1}{20} a^{5} - \frac{3}{40} a^{4} - \frac{9}{20} a^{3} - \frac{9}{20} a^{2} + \frac{1}{10} a$, $\frac{1}{40} a^{9} + \frac{1}{10} a^{7} - \frac{1}{20} a^{6} - \frac{3}{40} a^{5} + \frac{1}{20} a^{4} - \frac{9}{20} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{80} a^{10} - \frac{1}{80} a^{8} + \frac{1}{10} a^{7} - \frac{3}{80} a^{6} - \frac{1}{10} a^{5} + \frac{17}{80} a^{4} - \frac{1}{5} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{1120} a^{11} - \frac{1}{560} a^{10} + \frac{9}{1120} a^{9} - \frac{1}{280} a^{8} - \frac{59}{1120} a^{7} - \frac{7}{80} a^{6} + \frac{211}{1120} a^{5} + \frac{29}{140} a^{4} - \frac{233}{560} a^{3} - \frac{51}{140} a^{2} - \frac{27}{140} a - \frac{2}{7}$, $\frac{1}{22400} a^{12} + \frac{3}{11200} a^{11} - \frac{19}{3200} a^{10} + \frac{9}{1120} a^{9} + \frac{1}{3200} a^{8} - \frac{45}{448} a^{7} + \frac{29}{22400} a^{6} + \frac{261}{2800} a^{5} - \frac{531}{5600} a^{4} + \frac{289}{700} a^{3} + \frac{2693}{5600} a^{2} + \frac{1}{280} a + \frac{23}{56}$, $\frac{1}{14940800} a^{13} - \frac{1}{64400} a^{12} - \frac{1121}{14940800} a^{11} + \frac{77}{46400} a^{10} + \frac{38407}{14940800} a^{9} - \frac{21439}{3735200} a^{8} + \frac{685409}{14940800} a^{7} + \frac{432713}{7470400} a^{6} + \frac{143723}{3735200} a^{5} + \frac{217}{10672} a^{4} + \frac{26137}{3735200} a^{3} + \frac{12927}{64400} a^{2} - \frac{8143}{186760} a + \frac{1903}{18676}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 783838.546948 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 7.1.2471326208.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.2471326208.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 13 | Data not computed | ||||||