Normalized defining polynomial
\( x^{14} - 2 x^{13} + 3 x^{12} - 26 x^{11} + 34 x^{10} - 32 x^{9} + 155 x^{8} - 114 x^{7} + 1066 x^{6} - 736 x^{5} + 879 x^{4} - 250 x^{3} + 117 x^{2} - 6 x + 4 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4844156483581198523=-\,467^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $467$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{7} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{3}{16} a^{3} - \frac{1}{16} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{3}{16} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{5}{16} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{32} a^{10} - \frac{3}{32} a^{6} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a^{3} - \frac{7}{32} a^{2} - \frac{3}{16} a - \frac{3}{8}$, $\frac{1}{32} a^{11} - \frac{3}{32} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} - \frac{7}{32} a^{3} + \frac{1}{16} a^{2} + \frac{1}{8} a$, $\frac{1}{640} a^{12} - \frac{1}{128} a^{11} - \frac{9}{640} a^{10} + \frac{1}{40} a^{9} - \frac{11}{640} a^{8} + \frac{49}{640} a^{7} + \frac{13}{128} a^{6} + \frac{11}{80} a^{5} + \frac{7}{640} a^{4} + \frac{147}{640} a^{3} - \frac{151}{640} a^{2} - \frac{63}{320} a - \frac{77}{160}$, $\frac{1}{927656320} a^{13} - \frac{30005}{46382816} a^{12} - \frac{6658857}{463828160} a^{11} - \frac{6843729}{927656320} a^{10} - \frac{13423891}{927656320} a^{9} + \frac{10903427}{463828160} a^{8} + \frac{3734431}{92765632} a^{7} - \frac{27275807}{927656320} a^{6} + \frac{45571447}{927656320} a^{5} - \frac{65125139}{463828160} a^{4} - \frac{23936147}{115957040} a^{3} - \frac{72352141}{927656320} a^{2} + \frac{180876911}{463828160} a + \frac{5853639}{46382816}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14606.3296098 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-467}) \), 7.1.101847563.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.101847563.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 467 | Data not computed | ||||||