Normalized defining polynomial
\( x^{14} - 812 x^{11} - 25375 x^{10} + 91350 x^{9} + 5325705 x^{8} - 4215266 x^{7} - 437392326 x^{6} + 329836836 x^{5} + 19700239139 x^{4} - 19413083053 x^{3} - 423674050058 x^{2} + 251900249993 x + 3854284665359 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474489902930063357496193840307474416087=-\,7^{25}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $578.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(1154,·)$, $\chi_{1421}(547,·)$, $\chi_{1421}(132,·)$, $\chi_{1421}(1238,·)$, $\chi_{1421}(806,·)$, $\chi_{1421}(239,·)$, $\chi_{1421}(146,·)$, $\chi_{1421}(372,·)$, $\chi_{1421}(790,·)$, $\chi_{1421}(281,·)$, $\chi_{1421}(314,·)$, $\chi_{1421}(286,·)$, $\chi_{1421}(799,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{29} a^{7}$, $\frac{1}{29} a^{8}$, $\frac{1}{29} a^{9}$, $\frac{1}{841} a^{10} - \frac{5}{29} a^{6} - \frac{11}{29} a^{5} - \frac{12}{29} a^{4} - \frac{6}{29} a^{3}$, $\frac{1}{841} a^{11} - \frac{11}{29} a^{6} - \frac{12}{29} a^{5} - \frac{6}{29} a^{4}$, $\frac{1}{24389} a^{12} + \frac{1}{841} a^{9} - \frac{5}{841} a^{8} - \frac{11}{841} a^{7} + \frac{307}{841} a^{6} + \frac{139}{841} a^{5}$, $\frac{1}{195142919051373439279459117932797288748921520762843846896001} a^{13} - \frac{241650040653053868685418047625830583436665150687267351}{195142919051373439279459117932797288748921520762843846896001} a^{12} - \frac{1180019245301788668280285171991919872575672670956614433}{6729066174185291009636521308027492715480052440098063686069} a^{11} - \frac{3847614554251987088712530930130786020949931481097284775}{6729066174185291009636521308027492715480052440098063686069} a^{10} + \frac{63508228147056035633903462671418453873719586075908053}{232036764627079000332293838207844576395863877244760816761} a^{9} + \frac{105012288111530895259801538225161547815660325063072703387}{6729066174185291009636521308027492715480052440098063686069} a^{8} - \frac{114146814622721771417985738366345111979772939637658172401}{6729066174185291009636521308027492715480052440098063686069} a^{7} - \frac{2043802973590776686706448448889570956539616224623373764009}{6729066174185291009636521308027492715480052440098063686069} a^{6} - \frac{3209634257232915462196193300034468117421783581172759119529}{6729066174185291009636521308027492715480052440098063686069} a^{5} + \frac{24232422628305456036888780215799916349538133107627151740}{232036764627079000332293838207844576395863877244760816761} a^{4} + \frac{102437154463867486571455305620476922556664502133233794068}{232036764627079000332293838207844576395863877244760816761} a^{3} - \frac{1993487903392135506751143737445174726084348325608462942}{8001267745761344839044615110615330220547030249819338509} a^{2} - \frac{2268256460482049187720690328822144940192688580097861697}{8001267745761344839044615110615330220547030249819338509} a - \frac{3122413072091369347002948647494264916835785666287735627}{8001267745761344839044615110615330220547030249819338509}$
Class group and class number
$C_{7}\times C_{64589}$, which has order $452123$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78882035.29112078 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.8233120419813614521.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{14}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.89 | $x^{14} - 14 x^{13} + 21 x^{12} + 14 x^{7} - 21$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.7.6.4 | $x^{7} - 1856$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.4 | $x^{7} - 1856$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |