Normalized defining polynomial
\( x^{14} - 812 x^{11} + 17255 x^{10} - 221270 x^{9} + 5175079 x^{8} - 37003420 x^{7} + 382419520 x^{6} - 2313638096 x^{5} + 10397884315 x^{4} - 28019912375 x^{3} + 50915744628 x^{2} - 433333386675 x + 2558606699525 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474489902930063357496193840307474416087=-\,7^{25}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $578.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(1035,·)$, $\chi_{1421}(1156,·)$, $\chi_{1421}(1098,·)$, $\chi_{1421}(1387,·)$, $\chi_{1421}(748,·)$, $\chi_{1421}(335,·)$, $\chi_{1421}(720,·)$, $\chi_{1421}(146,·)$, $\chi_{1421}(596,·)$, $\chi_{1421}(1399,·)$, $\chi_{1421}(484,·)$, $\chi_{1421}(1051,·)$, $\chi_{1421}(1212,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{29} a^{7}$, $\frac{1}{29} a^{8}$, $\frac{1}{29} a^{9}$, $\frac{1}{4205} a^{10} + \frac{1}{145} a^{7} + \frac{3}{29} a^{6} + \frac{11}{29} a^{5} + \frac{72}{145} a^{4} + \frac{4}{29} a^{3} + \frac{2}{5} a$, $\frac{1}{4205} a^{11} + \frac{1}{145} a^{8} + \frac{11}{29} a^{6} + \frac{72}{145} a^{5} + \frac{4}{29} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{5243635} a^{12} + \frac{1}{180815} a^{11} + \frac{16}{180815} a^{10} + \frac{1306}{180815} a^{9} + \frac{2509}{180815} a^{8} + \frac{2984}{180815} a^{7} + \frac{78517}{180815} a^{6} - \frac{87792}{180815} a^{5} + \frac{882}{6235} a^{4} + \frac{2002}{6235} a^{3} + \frac{72}{215} a^{2} + \frac{12}{215} a - \frac{1}{43}$, $\frac{1}{2164909326228085693876880763200354365285203555925474381555} a^{13} + \frac{1254606188924452151293789745678280064123349353722}{2164909326228085693876880763200354365285203555925474381555} a^{12} - \frac{13082015081710896542719549825884782367412335646327}{514841694703468654905322416932307815763425340291432671} a^{11} + \frac{586086234045345412196038395046739220532615855047691}{14930409146400590992254350091036926657139334868451547459} a^{10} + \frac{1180892679174328394912868977334573447056564435604872532}{74652045732002954961271750455184633285696674342257737295} a^{9} - \frac{60936778147210812815230777676161887680539810373171522}{14930409146400590992254350091036926657139334868451547459} a^{8} - \frac{1274810285464295722200885817553450717554617600556316467}{74652045732002954961271750455184633285696674342257737295} a^{7} + \frac{18351505428809861086369238324743523541203635215281315654}{74652045732002954961271750455184633285696674342257737295} a^{6} - \frac{3504327978772254080842761351949895355712567259596787276}{14930409146400590992254350091036926657139334868451547459} a^{5} + \frac{5517409969038340116245219671017022596727502713443381}{514841694703468654905322416932307815763425340291432671} a^{4} + \frac{37044729456874697456424477646206049603840344730168869}{2574208473517343274526612084661539078817126701457163355} a^{3} - \frac{1021741776685650153607473155448697627195834700357345}{17753161886326505341562841963183028129773287596256299} a^{2} + \frac{27103125437615895741778931681677136014235603046239403}{88765809431632526707814209815915140648866437981281495} a - \frac{4290562508356437616046091329919604561338427457108586}{17753161886326505341562841963183028129773287596256299}$
Class group and class number
$C_{287}\times C_{287}$, which has order $82369$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 368248548.12946504 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.8233120419813614521.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.72 | $x^{14} + 63 x^{13} + 35 x^{12} + 98 x^{11} + 98 x^{10} - 98 x^{9} + 147 x^{8} - 112 x^{7} - 49 x^{6} + 147 x^{5} + 98 x^{4} - 49 x^{3} + 147 x^{2} + 49 x + 63$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.7.6.1 | $x^{7} + 232$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.1 | $x^{7} + 232$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |