Normalized defining polynomial
\( x^{14} - 812 x^{11} + 11571 x^{10} - 198534 x^{9} + 5169395 x^{8} - 38066328 x^{7} + 215110980 x^{6} - 2112867848 x^{5} + 12080530203 x^{4} - 43947685383 x^{3} + 263153797984 x^{2} - 206678117415 x + 1787701529889 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474489902930063357496193840307474416087=-\,7^{25}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $578.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(384,·)$, $\chi_{1421}(1,·)$, $\chi_{1421}(517,·)$, $\chi_{1421}(169,·)$, $\chi_{1421}(426,·)$, $\chi_{1421}(141,·)$, $\chi_{1421}(944,·)$, $\chi_{1421}(1009,·)$, $\chi_{1421}(146,·)$, $\chi_{1421}(692,·)$, $\chi_{1421}(645,·)$, $\chi_{1421}(951,·)$, $\chi_{1421}(1408,·)$, $\chi_{1421}(1093,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{957} a^{7} - \frac{4}{33} a^{6} + \frac{1}{33} a^{5} + \frac{4}{33} a^{4} + \frac{3}{11} a^{3} + \frac{2}{33} a^{2} + \frac{1}{33} a$, $\frac{1}{2871} a^{8} + \frac{1}{2871} a^{7} + \frac{2}{33} a^{6} - \frac{1}{9} a^{5} + \frac{5}{33} a^{4} - \frac{34}{99} a^{3} - \frac{40}{99} a^{2} + \frac{2}{11} a$, $\frac{1}{2871} a^{9} - \frac{1}{2871} a^{7} - \frac{14}{99} a^{6} - \frac{16}{99} a^{5} + \frac{14}{99} a^{4} + \frac{5}{11} a^{3} - \frac{26}{99} a^{2} + \frac{2}{33} a$, $\frac{1}{83259} a^{10} - \frac{442}{2871} a^{6} + \frac{125}{957} a^{5} + \frac{65}{957} a^{4} - \frac{224}{957} a^{3} + \frac{37}{99} a^{2} - \frac{5}{33} a$, $\frac{1}{749331} a^{11} + \frac{1}{249777} a^{10} + \frac{1}{8613} a^{9} + \frac{4}{25839} a^{8} + \frac{1}{8613} a^{7} + \frac{205}{8613} a^{6} + \frac{178}{2349} a^{5} + \frac{14}{99} a^{4} - \frac{3166}{8613} a^{3} + \frac{119}{891} a^{2} + \frac{64}{297} a - \frac{1}{9}$, $\frac{1}{114020452953} a^{12} - \frac{2471}{3931739757} a^{11} - \frac{4975}{1310579919} a^{10} - \frac{458837}{3931739757} a^{9} + \frac{432383}{3931739757} a^{8} + \frac{16649}{436859973} a^{7} + \frac{201194075}{3931739757} a^{6} + \frac{61994455}{3931739757} a^{5} - \frac{7001999}{45192411} a^{4} - \frac{3297497}{12325203} a^{3} - \frac{213667}{4675077} a^{2} - \frac{33487}{141669} a - \frac{611}{4293}$, $\frac{1}{2230872802850905657661753896248589927306509} a^{13} - \frac{3716318509143022426600106938103}{2230872802850905657661753896248589927306509} a^{12} - \frac{46166499018361099554042339571219120}{76926648374169160609025996422365169907121} a^{11} - \frac{10232372175786378463390798184913706}{6993331670379014600820545129305924537011} a^{10} + \frac{10272211415870076937819648957284815635}{76926648374169160609025996422365169907121} a^{9} + \frac{24792410998150608923732096434630802}{718940639010926734663794359087524952403} a^{8} - \frac{2848000766970388484368684854913511623}{5917434490320704662232768955566551531317} a^{7} + \frac{10075054982788570259774982609845495637776}{76926648374169160609025996422365169907121} a^{6} - \frac{8533035677247751362590749359011289491005}{76926648374169160609025996422365169907121} a^{5} - \frac{174432920153449850272628671793228087908}{2652643047385143469276758497322936893349} a^{4} - \frac{1186386879022404879274412290079726075887}{2652643047385143469276758497322936893349} a^{3} - \frac{13857642213602340921950153536857312044}{91470449909832533423336499907687479081} a^{2} - \frac{900271249257378860199894898496574074}{2771831815449470709798075754778408457} a + \frac{34685395264576854469478332604768666}{83994903498468809387820477417527529}$
Class group and class number
$C_{7}\times C_{6769}$, which has order $47383$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4115791439.997621 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.8233120419813614521.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.54 | $x^{14} - 119 x^{13} + 133 x^{12} - 98 x^{11} + 98 x^{10} + 98 x^{9} - 49 x^{8} + 21 x^{7} + 147 x^{6} + 98 x^{5} - 49 x^{4} + 49 x^{2} - 147 x + 112$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.7.6.5 | $x^{7} + 58$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.5 | $x^{7} + 58$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |