Normalized defining polynomial
\( x^{14} - 812 x^{11} - 12586 x^{10} + 111244 x^{9} + 4778620 x^{8} + 14868764 x^{7} - 194794943 x^{6} - 607090988 x^{5} + 9763306924 x^{4} - 4870385744 x^{3} - 61788068160 x^{2} + 140686678272 x + 1192124954624 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474489902930063357496193840307474416087=-\,7^{25}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $578.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(1350,·)$, $\chi_{1421}(778,·)$, $\chi_{1421}(139,·)$, $\chi_{1421}(78,·)$, $\chi_{1421}(1359,·)$, $\chi_{1421}(848,·)$, $\chi_{1421}(1329,·)$, $\chi_{1421}(146,·)$, $\chi_{1421}(20,·)$, $\chi_{1421}(181,·)$, $\chi_{1421}(400,·)$, $\chi_{1421}(1002,·)$, $\chi_{1421}(895,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{1856} a^{7} - \frac{1}{64} a^{6} - \frac{1}{64} a^{5} - \frac{3}{64} a^{4} - \frac{1}{16} a^{3} + \frac{1}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{3712} a^{8} - \frac{1}{64} a^{6} - \frac{1}{32} a^{5} + \frac{1}{128} a^{4} - \frac{3}{32} a^{3} + \frac{3}{32} a^{2} - \frac{3}{8} a$, $\frac{1}{3712} a^{9} + \frac{1}{64} a^{6} + \frac{7}{128} a^{5} + \frac{3}{64} a^{4} - \frac{7}{32} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{430592} a^{10} - \frac{1}{14848} a^{9} - \frac{1}{7424} a^{8} - \frac{1}{7424} a^{7} + \frac{349}{14848} a^{6} - \frac{833}{14848} a^{5} + \frac{5}{116} a^{4} + \frac{753}{3712} a^{3} - \frac{5}{32} a^{2} + \frac{1}{4} a$, $\frac{1}{1722368} a^{11} - \frac{1}{861184} a^{10} - \frac{1}{59392} a^{9} + \frac{1}{14848} a^{8} - \frac{1}{59392} a^{7} + \frac{235}{29696} a^{6} + \frac{305}{59392} a^{5} + \frac{43}{3712} a^{4} - \frac{2985}{14848} a^{3} - \frac{5}{64} a^{2} - \frac{15}{32} a + \frac{1}{4}$, $\frac{1}{1987757350912} a^{12} + \frac{3557}{34271678464} a^{11} - \frac{12841}{68543356928} a^{10} + \frac{217085}{4283959808} a^{9} + \frac{3147023}{68543356928} a^{8} - \frac{5123223}{34271678464} a^{7} - \frac{1081951863}{68543356928} a^{6} + \frac{977265953}{17135839232} a^{5} + \frac{20758803}{590891008} a^{4} + \frac{12150549}{147722752} a^{3} + \frac{140955}{1273472} a^{2} - \frac{128997}{318368} a + \frac{1957}{39796}$, $\frac{1}{29469144441420208819122772730287489024} a^{13} + \frac{6871525262115359556778989}{29469144441420208819122772730287489024} a^{12} + \frac{143346657427598011579557195453}{1016177394531731338590440438975430656} a^{11} + \frac{175762991040931070677120470493}{1016177394531731338590440438975430656} a^{10} - \frac{2990348014675495569066274012717}{35040599811439011675532428930187264} a^{9} + \frac{6094805482912752537233122891735}{1016177394531731338590440438975430656} a^{8} - \frac{56041369854953573859201062172489}{1016177394531731338590440438975430656} a^{7} + \frac{15508144895510592115441496915912503}{1016177394531731338590440438975430656} a^{6} + \frac{273525740234675196508420125648275}{31755543579116604330951263717982208} a^{5} + \frac{288772238915075245463520862220453}{8760149952859752918883107232546816} a^{4} - \frac{93062908426254931572381928154699}{2190037488214938229720776808136704} a^{3} - \frac{2790312297168513399473342908623}{18879633519094295083799800070144} a^{2} + \frac{163537743101368550903360445679}{4719908379773573770949950017536} a + \frac{79729870894991153569864200633}{589988547471696721368743752192}$
Class group and class number
$C_{7}\times C_{4200679}$, which has order $29404753$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8981416884.6774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.8233120419813614521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.73 | $x^{14} + 35 x^{13} + 21 x^{12} + 98 x^{11} - 49 x^{10} + 147 x^{9} - 147 x^{8} + 14 x^{7} - 49 x^{6} + 147 x^{5} + 98 x^{4} + 147 x^{3} + 49 x^{2} - 49 x + 28$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.7.6.7 | $x^{7} - 116$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.7 | $x^{7} - 116$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |