Normalized defining polynomial
\( x^{14} - 812 x^{11} + 8729 x^{10} - 45066 x^{9} + 4942035 x^{8} - 2313968 x^{7} + 215110980 x^{6} - 1577480520 x^{5} - 434148589 x^{4} - 29451595453 x^{3} + 40865281618 x^{2} + 463999676273 x + 542414506181 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474489902930063357496193840307474416087=-\,7^{25}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $578.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(741,·)$, $\chi_{1421}(1254,·)$, $\chi_{1421}(1196,·)$, $\chi_{1421}(1357,·)$, $\chi_{1421}(111,·)$, $\chi_{1421}(146,·)$, $\chi_{1421}(1301,·)$, $\chi_{1421}(575,·)$, $\chi_{1421}(953,·)$, $\chi_{1421}(890,·)$, $\chi_{1421}(603,·)$, $\chi_{1421}(190,·)$, $\chi_{1421}(629,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{29} a^{7}$, $\frac{1}{29} a^{8}$, $\frac{1}{29} a^{9}$, $\frac{1}{841} a^{10} + \frac{11}{29} a^{6} + \frac{12}{29} a^{5} + \frac{11}{29} a^{4} - \frac{13}{29} a^{3}$, $\frac{1}{841} a^{11} + \frac{12}{29} a^{6} + \frac{11}{29} a^{5} - \frac{13}{29} a^{4}$, $\frac{1}{101970409} a^{12} + \frac{388}{3516221} a^{11} - \frac{408}{3516221} a^{10} - \frac{9685}{3516221} a^{9} + \frac{33941}{3516221} a^{8} - \frac{26146}{3516221} a^{7} - \frac{463032}{3516221} a^{6} + \frac{1203023}{3516221} a^{5} - \frac{22495}{121249} a^{4} + \frac{28272}{121249} a^{3} + \frac{1512}{4181} a^{2} - \frac{1504}{4181} a + \frac{1996}{4181}$, $\frac{1}{175094130901747822961801700905695134480827425710739199729} a^{13} - \frac{368040854223053593632362534114104453174780548322}{175094130901747822961801700905695134480827425710739199729} a^{12} - \frac{470380663751706496791273258897133233018370895210848}{6037728651784407688337989686403280499338876748646179301} a^{11} - \frac{1173960572355224478344588666024255489390649234044448}{6037728651784407688337989686403280499338876748646179301} a^{10} - \frac{62282235534852023831348173965626469282604097768429211}{6037728651784407688337989686403280499338876748646179301} a^{9} - \frac{3062318350449004855111024262486208937956442448903983}{6037728651784407688337989686403280499338876748646179301} a^{8} - \frac{590387457740565597002007987452354783327449157769277}{163181855453632640225351072605494067549699371585031873} a^{7} + \frac{2654312844081357390422164401705259346924922444028024942}{6037728651784407688337989686403280499338876748646179301} a^{6} - \frac{1575175206696497181524067543540636441723813132410549297}{6037728651784407688337989686403280499338876748646179301} a^{5} + \frac{19783397366848080365404526323880069463403671653252404}{208197539716703713390965161600113120666857818918833769} a^{4} - \frac{47611228425753547840616483259448667433420900659768873}{208197539716703713390965161600113120666857818918833769} a^{3} + \frac{3211901825315238052684736670963488735727008897889593}{7179225507472541841067764193107348988512338583408061} a^{2} + \frac{2351119464258970889226511413934331318085875342038730}{7179225507472541841067764193107348988512338583408061} a - \frac{686294203108597194079428409742358805216276239545412}{7179225507472541841067764193107348988512338583408061}$
Class group and class number
$C_{4}\times C_{28}\times C_{3164}$, which has order $354368$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93363968.92853843 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.8233120419813614521.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.95 | $x^{14} + 168 x^{13} + 140 x^{12} + 49 x^{11} + 49 x^{10} - 49 x^{9} - 168 x^{7} - 147 x^{6} + 147 x^{5} - 49 x^{4} - 98 x^{3} + 98 x^{2} - 98 x - 91$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.7.6.6 | $x^{7} - 464$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.6 | $x^{7} - 464$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |