Normalized defining polynomial
\( x^{14} - 2 x^{13} + 12 x^{12} - 22 x^{11} + 261 x^{10} - 332 x^{9} + 3687 x^{8} - 2596 x^{7} + 35841 x^{6} - 17536 x^{5} + 240758 x^{4} - 110934 x^{3} + 986314 x^{2} - 244032 x + 1783541 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-452882922503000372480000000=-\,2^{14}\cdot 5^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(580=2^{2}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{580}(1,·)$, $\chi_{580}(139,·)$, $\chi_{580}(161,·)$, $\chi_{580}(459,·)$, $\chi_{580}(141,·)$, $\chi_{580}(239,·)$, $\chi_{580}(401,·)$, $\chi_{580}(81,·)$, $\chi_{580}(339,·)$, $\chi_{580}(181,·)$, $\chi_{580}(59,·)$, $\chi_{580}(281,·)$, $\chi_{580}(219,·)$, $\chi_{580}(199,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{4}{17} a^{11} + \frac{5}{17} a^{10} + \frac{3}{17} a^{9} + \frac{5}{17} a^{8} - \frac{4}{17} a^{7} + \frac{6}{17} a^{6} - \frac{5}{17} a^{5} - \frac{7}{17} a^{4} + \frac{2}{17} a^{3} - \frac{5}{17} a^{2} + \frac{1}{17} a - \frac{1}{17}$, $\frac{1}{21533476451879886599332319755093} a^{13} + \frac{127852920033082372490495925280}{21533476451879886599332319755093} a^{12} - \frac{986379363077531151651847387651}{21533476451879886599332319755093} a^{11} - \frac{9478256870837718648332482318342}{21533476451879886599332319755093} a^{10} - \frac{6339230510180523551627326073450}{21533476451879886599332319755093} a^{9} - \frac{8839625855307234596816284999341}{21533476451879886599332319755093} a^{8} - \frac{6885796957937038652078475389523}{21533476451879886599332319755093} a^{7} - \frac{87860244409477190345149766748}{21533476451879886599332319755093} a^{6} + \frac{6571114414604434278634761849495}{21533476451879886599332319755093} a^{5} + \frac{9411552402581111022908410164120}{21533476451879886599332319755093} a^{4} - \frac{5292222242052558814943942746780}{21533476451879886599332319755093} a^{3} - \frac{8421341446475547652349729466353}{21533476451879886599332319755093} a^{2} - \frac{626839595770420321790230471737}{21533476451879886599332319755093} a + \frac{87265186431773943033452315540}{525206742728777721934934628173}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{406}$, which has order $3248$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |