Normalized defining polynomial
\( x^{14} - x^{13} + 17 x^{12} - 71 x^{11} - 540 x^{10} - 9712 x^{9} + 123934 x^{8} - 900107 x^{7} + 7843772 x^{6} - 48211158 x^{5} + 168859238 x^{4} - 321562607 x^{3} + 591306086 x^{2} - 1637661044 x + 2026251923 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-44931703384098017538267680344521103=-\,463^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $298.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $463$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(463\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{463}(1,·)$, $\chi_{463}(34,·)$, $\chi_{463}(230,·)$, $\chi_{463}(233,·)$, $\chi_{463}(429,·)$, $\chi_{463}(462,·)$, $\chi_{463}(177,·)$, $\chi_{463}(51,·)$, $\chi_{463}(308,·)$, $\chi_{463}(118,·)$, $\chi_{463}(345,·)$, $\chi_{463}(155,·)$, $\chi_{463}(412,·)$, $\chi_{463}(286,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17956525113107271417578514459637783728662633780145668053} a^{13} - \frac{5173915121217981566351072345321551962694373611525110285}{17956525113107271417578514459637783728662633780145668053} a^{12} - \frac{7253454099609977956763895768194666838547726049141261232}{17956525113107271417578514459637783728662633780145668053} a^{11} + \frac{6530791167880084687031818527547461775464011372558956320}{17956525113107271417578514459637783728662633780145668053} a^{10} - \frac{5807546098025729252611581919979626002278017859811205210}{17956525113107271417578514459637783728662633780145668053} a^{9} + \frac{8846337914653136036211436332296002762872900529537384252}{17956525113107271417578514459637783728662633780145668053} a^{8} + \frac{3080116651017228066680786338845887534078815681994764515}{17956525113107271417578514459637783728662633780145668053} a^{7} + \frac{4139231924879246327638871002928697109726689093167245132}{17956525113107271417578514459637783728662633780145668053} a^{6} + \frac{4250567385558844058292896881994585032600708801353548094}{17956525113107271417578514459637783728662633780145668053} a^{5} + \frac{775809420569211250058200889507840796649165959505447919}{17956525113107271417578514459637783728662633780145668053} a^{4} + \frac{1322056732729035736404053911143816321231881675282902255}{17956525113107271417578514459637783728662633780145668053} a^{3} - \frac{242222169967161211764879138161867630381526966570133361}{17956525113107271417578514459637783728662633780145668053} a^{2} + \frac{720247804531336282662672859019338135155353098904190216}{17956525113107271417578514459637783728662633780145668053} a + \frac{3297312018739794847373893437764309795110352651245964472}{17956525113107271417578514459637783728662633780145668053}$
Class group and class number
$C_{2}\times C_{2}\times C_{2842}$, which has order $11368$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12278961.491848389 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-463}) \), 7.7.9851127637605409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 463 | Data not computed | ||||||