Normalized defining polynomial
\( x^{14} - x^{13} + 24 x^{12} - 760 x^{11} - 4652 x^{10} - 14210 x^{9} + 53254 x^{8} + 2644631 x^{7} + 25016954 x^{6} + 79585767 x^{5} + 229342015 x^{4} + 30774107 x^{3} + 1793249698 x^{2} + 3458916720 x + 18994958023 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4420896929577970806479733313662687779=-\,659^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $414.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $659$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(659\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{659}(352,·)$, $\chi_{659}(1,·)$, $\chi_{659}(515,·)$, $\chi_{659}(389,·)$, $\chi_{659}(647,·)$, $\chi_{659}(12,·)$, $\chi_{659}(270,·)$, $\chi_{659}(144,·)$, $\chi_{659}(658,·)$, $\chi_{659}(307,·)$, $\chi_{659}(55,·)$, $\chi_{659}(249,·)$, $\chi_{659}(410,·)$, $\chi_{659}(604,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{1203920346508919899418718119764512142932078764350086564036283483} a^{13} + \frac{217770411684784519212737801779290970266130619723343435960601455}{1203920346508919899418718119764512142932078764350086564036283483} a^{12} + \frac{560499192761555945267032752502939532880888873758893243447824090}{1203920346508919899418718119764512142932078764350086564036283483} a^{11} - \frac{71163630165782203752532409018953836771999826033064139938405432}{1203920346508919899418718119764512142932078764350086564036283483} a^{10} + \frac{28947736482741670365427690294826297546913049202994349947985049}{1203920346508919899418718119764512142932078764350086564036283483} a^{9} - \frac{414897225126431159221293962360931469551038613832674948867524327}{1203920346508919899418718119764512142932078764350086564036283483} a^{8} - \frac{493306081088538076372581540304413058138907047885729032190967427}{1203920346508919899418718119764512142932078764350086564036283483} a^{7} + \frac{364805478768582552550286913297024956780197844557671467681732464}{1203920346508919899418718119764512142932078764350086564036283483} a^{6} + \frac{36940751655604016930996290190815696159508726764145445559063408}{1203920346508919899418718119764512142932078764350086564036283483} a^{5} - \frac{328939154800181793420064762455633787927637041940612314660379212}{1203920346508919899418718119764512142932078764350086564036283483} a^{4} + \frac{583660273041750747798781631115320147581797093712492068849901910}{1203920346508919899418718119764512142932078764350086564036283483} a^{3} - \frac{503022745831352850764195020487684060387019948320133848754390474}{1203920346508919899418718119764512142932078764350086564036283483} a^{2} + \frac{81459830963075093870851472651897797190765971034206772462099597}{1203920346508919899418718119764512142932078764350086564036283483} a - \frac{508315423965975544534968012979680355101189007636604496748149925}{1203920346508919899418718119764512142932078764350086564036283483}$
Class group and class number
$C_{2}\times C_{2}\times C_{4334}$, which has order $17336$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 89341256.28995533 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-659}) \), 7.7.81905390937410041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 659 | Data not computed | ||||||