Normalized defining polynomial
\( x^{14} + 21 x^{12} - 42 x^{11} + 350 x^{10} - 553 x^{9} + 2184 x^{8} - 2696 x^{7} + 8869 x^{6} - 8701 x^{5} + 18151 x^{4} - 8246 x^{3} + 17920 x^{2} - 8148 x + 9409 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-418988153029298748294987=-\,3^{7}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(147=3\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{147}(64,·)$, $\chi_{147}(1,·)$, $\chi_{147}(134,·)$, $\chi_{147}(71,·)$, $\chi_{147}(8,·)$, $\chi_{147}(106,·)$, $\chi_{147}(43,·)$, $\chi_{147}(113,·)$, $\chi_{147}(50,·)$, $\chi_{147}(85,·)$, $\chi_{147}(22,·)$, $\chi_{147}(92,·)$, $\chi_{147}(29,·)$, $\chi_{147}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{589} a^{10} - \frac{268}{589} a^{9} - \frac{125}{589} a^{8} + \frac{265}{589} a^{7} - \frac{156}{589} a^{6} + \frac{23}{589} a^{5} - \frac{273}{589} a^{4} - \frac{198}{589} a^{3} + \frac{159}{589} a^{2} + \frac{26}{589} a - \frac{233}{589}$, $\frac{1}{589} a^{11} - \frac{91}{589} a^{9} - \frac{251}{589} a^{8} + \frac{184}{589} a^{7} + \frac{34}{589} a^{6} + \frac{1}{589} a^{5} + \frac{263}{589} a^{4} + \frac{105}{589} a^{3} + \frac{230}{589} a^{2} + \frac{256}{589} a - \frac{10}{589}$, $\frac{1}{589} a^{12} + \frac{99}{589} a^{9} - \frac{59}{589} a^{6} - \frac{118}{589} a^{3} + \frac{1}{589}$, $\frac{1}{1895673790255648453} a^{13} + \frac{5828455076247}{19543028765522149} a^{12} - \frac{91476252389347}{1895673790255648453} a^{11} - \frac{1013754594507566}{1895673790255648453} a^{10} + \frac{774374721858168606}{1895673790255648453} a^{9} + \frac{176500704584479044}{1895673790255648453} a^{8} + \frac{97273106589424927}{1895673790255648453} a^{7} - \frac{95180973716813111}{1895673790255648453} a^{6} + \frac{296184478089752521}{1895673790255648453} a^{5} + \frac{54065034148456543}{1895673790255648453} a^{4} + \frac{618754878968356045}{1895673790255648453} a^{3} - \frac{27392730788016995}{1895673790255648453} a^{2} + \frac{49711488262123048}{1895673790255648453} a - \frac{4328955486703941}{19543028765522149}$
Class group and class number
$C_{203}$, which has order $203$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{161289742466524}{1895673790255648453} a^{13} - \frac{957311663154}{19543028765522149} a^{12} - \frac{3252983796414282}{1895673790255648453} a^{11} + \frac{4785500909859803}{1895673790255648453} a^{10} - \frac{50010109733421474}{1895673790255648453} a^{9} + \frac{50386722190134414}{1895673790255648453} a^{8} - \frac{257564795016183278}{1895673790255648453} a^{7} + \frac{157348402783570740}{1895673790255648453} a^{6} - \frac{958061773957764798}{1895673790255648453} a^{5} + \frac{288377486595742334}{1895673790255648453} a^{4} - \frac{1285265248884962772}{1895673790255648453} a^{3} - \frac{1523096170019655210}{1895673790255648453} a^{2} - \frac{1081764845716455943}{1895673790255648453} a + \frac{2712612543346663}{19543028765522149} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.6897369 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |