Normalized defining polynomial
\( x^{14} + 213 x^{12} + 14058 x^{10} + 358479 x^{8} + 4244238 x^{6} + 24119694 x^{4} + 59988681 x^{2} + 44875053 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-41747190692552429248373387378688=-\,2^{14}\cdot 3^{7}\cdot 71^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $181.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(852=2^{2}\cdot 3\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{852}(1,·)$, $\chi_{852}(323,·)$, $\chi_{852}(517,·)$, $\chi_{852}(385,·)$, $\chi_{852}(239,·)$, $\chi_{852}(815,·)$, $\chi_{852}(529,·)$, $\chi_{852}(37,·)$, $\chi_{852}(467,·)$, $\chi_{852}(23,·)$, $\chi_{852}(851,·)$, $\chi_{852}(335,·)$, $\chi_{852}(829,·)$, $\chi_{852}(613,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{45} a^{4} - \frac{1}{5}$, $\frac{1}{45} a^{5} - \frac{1}{5} a$, $\frac{1}{135} a^{6} - \frac{1}{15} a^{2}$, $\frac{1}{135} a^{7} - \frac{1}{15} a^{3}$, $\frac{1}{2025} a^{8} - \frac{2}{225} a^{4} + \frac{1}{25}$, $\frac{1}{2025} a^{9} - \frac{2}{225} a^{5} + \frac{1}{25} a$, $\frac{1}{151875} a^{10} - \frac{4}{50625} a^{8} - \frac{19}{5625} a^{6} - \frac{22}{5625} a^{4} + \frac{102}{625} a^{2} + \frac{276}{625}$, $\frac{1}{2581875} a^{11} + \frac{146}{860625} a^{9} + \frac{4}{16875} a^{7} - \frac{41}{5625} a^{5} + \frac{3931}{31875} a^{3} + \frac{176}{10625} a$, $\frac{1}{2192011875} a^{12} - \frac{908}{730670625} a^{10} + \frac{1}{530625} a^{8} - \frac{2419}{1591875} a^{6} + \frac{56923}{9020625} a^{4} - \frac{1488973}{9020625} a^{2} + \frac{42788}{176875}$, $\frac{1}{2192011875} a^{13} - \frac{59}{730670625} a^{11} + \frac{4138}{243556875} a^{9} - \frac{143}{176875} a^{7} - \frac{180434}{27061875} a^{5} - \frac{386143}{3006875} a^{3} + \frac{151309}{601375} a$
Class group and class number
$C_{2}\times C_{20612}$, which has order $41224$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-213}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.14.13.11 | $x^{14} + 9088$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |