Normalized defining polynomial
\( x^{14} - x^{13} + 174 x^{12} - 195 x^{11} + 8592 x^{10} - 29768 x^{9} + 139645 x^{8} - 755470 x^{7} + 2331639 x^{6} - 7462084 x^{5} + 33375503 x^{4} - 30681299 x^{3} + 212182491 x^{2} - 44623278 x + 401609231 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-403372275797631336682377398030279=-\,7^{7}\cdot 113^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $213.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(791=7\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{791}(1,·)$, $\chi_{791}(162,·)$, $\chi_{791}(708,·)$, $\chi_{791}(694,·)$, $\chi_{791}(230,·)$, $\chi_{791}(97,·)$, $\chi_{791}(106,·)$, $\chi_{791}(141,·)$, $\chi_{791}(685,·)$, $\chi_{791}(561,·)$, $\chi_{791}(83,·)$, $\chi_{791}(629,·)$, $\chi_{791}(790,·)$, $\chi_{791}(650,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{281668520004835275272705459064378110203362656806341967} a^{13} - \frac{25116276994565449230442037104417400455058900030011972}{281668520004835275272705459064378110203362656806341967} a^{12} + \frac{75484509371253108100052878387578290185043668855650599}{281668520004835275272705459064378110203362656806341967} a^{11} - \frac{6321909327254516455214692281540852527185241689320879}{281668520004835275272705459064378110203362656806341967} a^{10} - \frac{123382074329486485956063846836182132499497657430717822}{281668520004835275272705459064378110203362656806341967} a^{9} + \frac{17891328691432836110076900102087233550758584503576668}{281668520004835275272705459064378110203362656806341967} a^{8} - \frac{130860372962716755605669047481523653737504162900847360}{281668520004835275272705459064378110203362656806341967} a^{7} + \frac{18237141304248982523673803617813951129695580942183489}{281668520004835275272705459064378110203362656806341967} a^{6} - \frac{134921995185089252512853123613088160342675839131876492}{281668520004835275272705459064378110203362656806341967} a^{5} - \frac{109687254499135394032637809370241379159991003940189060}{281668520004835275272705459064378110203362656806341967} a^{4} + \frac{5201543187595319961990960776612585851272443019408875}{281668520004835275272705459064378110203362656806341967} a^{3} + \frac{3553592537274645419418620267076295072217494548795420}{281668520004835275272705459064378110203362656806341967} a^{2} + \frac{140167619629391830919388663524828501008949779356081528}{281668520004835275272705459064378110203362656806341967} a + \frac{19705648091807962822033983707607213795494293078892862}{281668520004835275272705459064378110203362656806341967}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{928}$, which has order $59392$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222748.97284811488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-791}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $113$ | 113.14.13.1 | $x^{14} - 113$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |