Normalized defining polynomial
\( x^{14} - 28 x^{12} - 42 x^{11} + 371 x^{10} + 1022 x^{9} - 791 x^{8} - 4240 x^{7} + 8057 x^{6} + 35938 x^{5} + 35840 x^{4} + 6146 x^{3} + 123060 x^{2} + 334516 x + 420353 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-401774962552217617093885952=-\,2^{21}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(392=2^{3}\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{392}(1,·)$, $\chi_{392}(323,·)$, $\chi_{392}(211,·)$, $\chi_{392}(225,·)$, $\chi_{392}(169,·)$, $\chi_{392}(267,·)$, $\chi_{392}(337,·)$, $\chi_{392}(113,·)$, $\chi_{392}(99,·)$, $\chi_{392}(155,·)$, $\chi_{392}(43,·)$, $\chi_{392}(281,·)$, $\chi_{392}(57,·)$, $\chi_{392}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{19} a^{11} - \frac{2}{19} a^{10} + \frac{1}{19} a^{9} - \frac{6}{19} a^{8} + \frac{4}{19} a^{7} + \frac{2}{19} a^{6} - \frac{7}{19} a^{5} - \frac{5}{19} a^{4} - \frac{7}{19} a^{3} + \frac{4}{19} a^{2} - \frac{9}{19} a + \frac{5}{19}$, $\frac{1}{589} a^{12} + \frac{13}{589} a^{11} + \frac{275}{589} a^{10} - \frac{181}{589} a^{9} - \frac{162}{589} a^{8} - \frac{166}{589} a^{7} - \frac{167}{589} a^{6} + \frac{175}{589} a^{5} + \frac{13}{589} a^{4} - \frac{25}{589} a^{3} - \frac{253}{589} a^{2} + \frac{3}{589} a + \frac{227}{589}$, $\frac{1}{6407930378631117233228957503} a^{13} + \frac{334771912130471124321347}{6407930378631117233228957503} a^{12} - \frac{48189930837159862032045949}{6407930378631117233228957503} a^{11} - \frac{1410185484965713761141740588}{6407930378631117233228957503} a^{10} - \frac{2474033987243003630328522221}{6407930378631117233228957503} a^{9} - \frac{68377282251526347344568781}{337259493612164064906787237} a^{8} - \frac{25432803619058540481680753}{206707431568745717200934113} a^{7} + \frac{2636092861200192703340991410}{6407930378631117233228957503} a^{6} - \frac{2000945476535487009403776934}{6407930378631117233228957503} a^{5} + \frac{895681454583815203006891575}{6407930378631117233228957503} a^{4} - \frac{1936718645880634061395275977}{6407930378631117233228957503} a^{3} - \frac{685558687867534553071292}{10879338503618195642154427} a^{2} + \frac{522731669669079189646111518}{6407930378631117233228957503} a - \frac{1802674105049301663760871550}{6407930378631117233228957503}$
Class group and class number
$C_{953}$, which has order $953$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |