Normalized defining polynomial
\( x^{14} - 7 x^{13} + 119 x^{12} - 623 x^{11} + 5621 x^{10} - 22561 x^{9} + 138677 x^{8} - 425645 x^{7} + 1940554 x^{6} - 4496800 x^{5} + 15613444 x^{4} - 22376228 x^{3} + 61475764 x^{2} - 56224420 x + 107616980 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3981828055054226410930351572089280000000=-\,2^{12}\cdot 3^{12}\cdot 5^{7}\cdot 7^{14}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $673.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{11} a^{7} + \frac{2}{11} a^{6} - \frac{3}{11} a^{5} - \frac{3}{11} a^{4} - \frac{4}{11} a^{3} - \frac{1}{11} a^{2} + \frac{2}{11} a + \frac{3}{11}$, $\frac{1}{22} a^{8} + \frac{2}{11} a^{6} - \frac{4}{11} a^{5} - \frac{9}{22} a^{4} - \frac{2}{11} a^{3} + \frac{2}{11} a^{2} + \frac{5}{11} a - \frac{3}{11}$, $\frac{1}{22} a^{9} + \frac{3}{11} a^{6} + \frac{3}{22} a^{5} + \frac{4}{11} a^{4} - \frac{1}{11} a^{3} - \frac{4}{11} a^{2} + \frac{4}{11} a + \frac{5}{11}$, $\frac{1}{22} a^{10} - \frac{9}{22} a^{6} + \frac{2}{11} a^{5} - \frac{3}{11} a^{4} - \frac{3}{11} a^{3} - \frac{4}{11} a^{2} - \frac{1}{11} a + \frac{2}{11}$, $\frac{1}{22} a^{11} - \frac{1}{22} a^{7} - \frac{1}{11} a^{6} - \frac{4}{11} a^{5} - \frac{4}{11} a^{4} + \frac{2}{11} a^{3} - \frac{5}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{242} a^{12} + \frac{5}{242} a^{11} - \frac{1}{22} a^{7} + \frac{4}{11} a^{6} - \frac{1}{11} a^{5} - \frac{5}{22} a^{4} - \frac{4}{11} a^{3} - \frac{1}{11} a^{2} - \frac{36}{121} a + \frac{40}{121}$, $\frac{1}{481965620955056589851030762411246} a^{13} + \frac{44894995202334474759225126262}{21907528225229844993228671018693} a^{12} - \frac{3646940901763828043669404493111}{481965620955056589851030762411246} a^{11} + \frac{189567708847846105272691712612}{21907528225229844993228671018693} a^{10} - \frac{239522238824241141790880188830}{21907528225229844993228671018693} a^{9} - \frac{44862171122785008135471936908}{21907528225229844993228671018693} a^{8} + \frac{1175065914923309684995214179847}{43815056450459689986457342037386} a^{7} - \frac{8714618498137899140551249317449}{21907528225229844993228671018693} a^{6} - \frac{8402532670762721181661236162261}{43815056450459689986457342037386} a^{5} - \frac{4068305304639442212700746871836}{21907528225229844993228671018693} a^{4} + \frac{4033633538765433796070311060997}{21907528225229844993228671018693} a^{3} + \frac{92490950542508811813594094527207}{240982810477528294925515381205623} a^{2} + \frac{671046407317335377963425571438}{21907528225229844993228671018693} a + \frac{50329928240629617580534767256857}{240982810477528294925515381205623}$
Class group and class number
$C_{7}\times C_{84}$, which has order $588$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 854604676346.2672 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-55}) \), 7.1.68069081958026688.23 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.7.7.5 | $x^{7} + 7 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ |
| 7.7.7.5 | $x^{7} + 7 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| $11$ | 11.14.13.2 | $x^{14} + 33$ | $14$ | $1$ | $13$ | $(C_7:C_3) \times C_2$ | $[\ ]_{14}^{3}$ |