Normalized defining polynomial
\( x^{14} - x^{13} + 20 x^{12} - 162 x^{11} - 1238 x^{10} - 4668 x^{9} + 92865 x^{8} - 914451 x^{7} - 6262919 x^{6} + 5224933 x^{5} + 245440053 x^{4} + 755961898 x^{3} + 716216243 x^{2} - 1079662218 x + 4124434193 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-392496006513281583932595840500243827=-\,547^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $348.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(547\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{547}(544,·)$, $\chi_{547}(1,·)$, $\chi_{547}(546,·)$, $\chi_{547}(3,·)$, $\chi_{547}(520,·)$, $\chi_{547}(9,·)$, $\chi_{547}(365,·)$, $\chi_{547}(304,·)$, $\chi_{547}(81,·)$, $\chi_{547}(466,·)$, $\chi_{547}(243,·)$, $\chi_{547}(182,·)$, $\chi_{547}(538,·)$, $\chi_{547}(27,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{11} a^{8} + \frac{3}{11} a^{7} + \frac{5}{11} a^{6} - \frac{4}{11} a^{5} + \frac{2}{11} a^{4} - \frac{2}{11} a^{3} + \frac{3}{11} a^{2} + \frac{3}{11} a$, $\frac{1}{11} a^{9} - \frac{4}{11} a^{7} + \frac{3}{11} a^{6} + \frac{3}{11} a^{5} + \frac{3}{11} a^{4} - \frac{2}{11} a^{3} + \frac{5}{11} a^{2} + \frac{2}{11} a$, $\frac{1}{11} a^{10} + \frac{4}{11} a^{7} + \frac{1}{11} a^{6} - \frac{2}{11} a^{5} - \frac{5}{11} a^{4} - \frac{3}{11} a^{3} + \frac{3}{11} a^{2} + \frac{1}{11} a$, $\frac{1}{11} a^{11} - \frac{1}{11} a$, $\frac{1}{121} a^{12} + \frac{3}{121} a^{11} - \frac{5}{121} a^{9} - \frac{4}{121} a^{8} + \frac{52}{121} a^{7} + \frac{20}{121} a^{6} + \frac{45}{121} a^{5} - \frac{12}{121} a^{4} + \frac{7}{121} a^{3} + \frac{6}{121} a^{2} - \frac{25}{121} a$, $\frac{1}{18772216479128563719492890527098392895422363461692923} a^{13} + \frac{31430287000326282984261188598834650619122301556833}{18772216479128563719492890527098392895422363461692923} a^{12} + \frac{42975666076990082215595128621373307741550338318409}{18772216479128563719492890527098392895422363461692923} a^{11} - \frac{4062641464018873765945493376588079903142302073713}{18772216479128563719492890527098392895422363461692923} a^{10} - \frac{637923245077914216543779502246039247487926750249917}{18772216479128563719492890527098392895422363461692923} a^{9} + \frac{526901877059188216096715231148047817534632232332307}{18772216479128563719492890527098392895422363461692923} a^{8} + \frac{4385737867685768096229169640163303287695814303404296}{18772216479128563719492890527098392895422363461692923} a^{7} + \frac{7628982801495354260464298517615522980734537357005046}{18772216479128563719492890527098392895422363461692923} a^{6} + \frac{15268822117387055161977488289786774184666592224415}{95290438980348039185243099122326867489453621632959} a^{5} - \frac{4410961279591839468613569037836960185736180706611549}{18772216479128563719492890527098392895422363461692923} a^{4} + \frac{2981023133967658229224142608506254685806394814098699}{18772216479128563719492890527098392895422363461692923} a^{3} - \frac{2665276641703020058819570590857728134465962441634229}{18772216479128563719492890527098392895422363461692923} a^{2} - \frac{2081094231199654303073606139270452134906595394970434}{18772216479128563719492890527098392895422363461692923} a - \frac{1532849511482485849517684979760482787122666108942}{3300899679818632621679776776349286600214939944029}$
Class group and class number
$C_{32259}$, which has order $32259$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69192405.98699488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-547}) \), 7.7.26786992617986329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 547 | Data not computed | ||||||